{"title":"串联摆调谐质量阻尼器-调谐液体阻尼器的非线性建模","authors":"K. McNamara, J. Love, M. Tait","doi":"10.1115/1.4053636","DOIUrl":null,"url":null,"abstract":"\n The nonlinear response of a series-type pendulum tuned mass damper-tuned liquid damper (TMD-TLD) system is investigated in this study. The TLD is mounted on the pendulum TMD in series to remove the need for costly viscous damping elements. Since the response of the TMD is greater than that of the primary structure, the TLD experiences a significant base motion, leading to a highly nonlinear response that is difficult to model. The nonlinear pendulum TMD equation of motion is modelled without linearizing assumptions. The TLD is represented by an incompressible smoothed particle hydrodynamics (SPH) model that can capture large sloshing responses. The nonlinear model results are compared to shake table testing for a TMD-TLD system and a linear equivalent mechanical model. Four system configurations are considered. The nonlinear model shows good agreement with the experimental data for the TMD displacement and TLD wave heights in both time and frequency domains. The nonlinear model shows improved agreement compared to the linear model for all cases studied, especially for the TLD wave heights. The impact of simplifying the pendulum TMD equation of motion by the small angle assumption is investigated for two cases. The results indicate that the simplified pendulum equation does not properly capture the frequency of the TMD in the TMD-TLD system, and results in a reduction in calculated TLD wave heights compared to the fully nonlinear equation. It is therefore critical to consider the fully nonlinear pendulum TMD response to capture the TMD-TLD behavior.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear modelling of series-type pendulum tuned mass damper-tuned liquid damper\",\"authors\":\"K. McNamara, J. Love, M. Tait\",\"doi\":\"10.1115/1.4053636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The nonlinear response of a series-type pendulum tuned mass damper-tuned liquid damper (TMD-TLD) system is investigated in this study. The TLD is mounted on the pendulum TMD in series to remove the need for costly viscous damping elements. Since the response of the TMD is greater than that of the primary structure, the TLD experiences a significant base motion, leading to a highly nonlinear response that is difficult to model. The nonlinear pendulum TMD equation of motion is modelled without linearizing assumptions. The TLD is represented by an incompressible smoothed particle hydrodynamics (SPH) model that can capture large sloshing responses. The nonlinear model results are compared to shake table testing for a TMD-TLD system and a linear equivalent mechanical model. Four system configurations are considered. The nonlinear model shows good agreement with the experimental data for the TMD displacement and TLD wave heights in both time and frequency domains. The nonlinear model shows improved agreement compared to the linear model for all cases studied, especially for the TLD wave heights. The impact of simplifying the pendulum TMD equation of motion by the small angle assumption is investigated for two cases. The results indicate that the simplified pendulum equation does not properly capture the frequency of the TMD in the TMD-TLD system, and results in a reduction in calculated TLD wave heights compared to the fully nonlinear equation. It is therefore critical to consider the fully nonlinear pendulum TMD response to capture the TMD-TLD behavior.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053636\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053636","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Nonlinear modelling of series-type pendulum tuned mass damper-tuned liquid damper
The nonlinear response of a series-type pendulum tuned mass damper-tuned liquid damper (TMD-TLD) system is investigated in this study. The TLD is mounted on the pendulum TMD in series to remove the need for costly viscous damping elements. Since the response of the TMD is greater than that of the primary structure, the TLD experiences a significant base motion, leading to a highly nonlinear response that is difficult to model. The nonlinear pendulum TMD equation of motion is modelled without linearizing assumptions. The TLD is represented by an incompressible smoothed particle hydrodynamics (SPH) model that can capture large sloshing responses. The nonlinear model results are compared to shake table testing for a TMD-TLD system and a linear equivalent mechanical model. Four system configurations are considered. The nonlinear model shows good agreement with the experimental data for the TMD displacement and TLD wave heights in both time and frequency domains. The nonlinear model shows improved agreement compared to the linear model for all cases studied, especially for the TLD wave heights. The impact of simplifying the pendulum TMD equation of motion by the small angle assumption is investigated for two cases. The results indicate that the simplified pendulum equation does not properly capture the frequency of the TMD in the TMD-TLD system, and results in a reduction in calculated TLD wave heights compared to the fully nonlinear equation. It is therefore critical to consider the fully nonlinear pendulum TMD response to capture the TMD-TLD behavior.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.