M. Shahid, S. Joshi, N. Alqhtani, M. Alsaidan, K. Aldossari, A. Abuderman, Mannaa Aldowsar, S. Al-Ghamdi, H. Balto, N. Al-Hammad, eep Agrawal, Altaf H. Shah, A. Ahmed, V. Dhillon
{"title":"牙齿发育相关基因的单核苷酸多态性(SNPs)","authors":"M. Shahid, S. Joshi, N. Alqhtani, M. Alsaidan, K. Aldossari, A. Abuderman, Mannaa Aldowsar, S. Al-Ghamdi, H. Balto, N. Al-Hammad, eep Agrawal, Altaf H. Shah, A. Ahmed, V. Dhillon","doi":"10.21767/2248-9215.100017","DOIUrl":null,"url":null,"abstract":"Objectives: The main focus of this review article was to collate up to date knowledge with regard to significance of single nucleotide polymorphisms (SNPs) in various genes associated with tooth agenesis. Failure to develop complete set of teeth also called tooth agenesis is a common developmental abnormality manifested mainly as an isolated condition. This anomaly is also associated with many developmental syndromes. Methods: We reviewed the evidence from the literature with regard to SNPs in many genes associated with this developmental anomaly. The information contained in this review deals only with non-syndromic form of tooth agenesis. This condition generally affects third molars or one or few other permanent teeth, however, in some cases its severity is relatively prevalent. Results and Conclusions: Mutations in genes such as Msh homeobox 1 (MSX1), Paired box gene 9 (PAX9), Axis inhibitor protein 2 (AXIN2) and Ectodysplasin A (EDA) have been identified that are associated with the familial form of the disease. It has been shown that the phenotypes associated with these mutations indicate the involvement of more complex mechanisms. Clinical Significance: Evidence collected so far has immense clinical significance to clinical dentists in providing comprehensive guide outlining the role of these gene mutations (SNPs) in various genes and also how the patients affected with this condition will be clinically diagnosed and managed in future.","PeriodicalId":12012,"journal":{"name":"European Journal of Experimental Biology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Single Nucleotide Polymorphism (SNPs) in the Genes Associated with Tooth Agenesis\",\"authors\":\"M. Shahid, S. Joshi, N. Alqhtani, M. Alsaidan, K. Aldossari, A. Abuderman, Mannaa Aldowsar, S. Al-Ghamdi, H. Balto, N. Al-Hammad, eep Agrawal, Altaf H. Shah, A. Ahmed, V. Dhillon\",\"doi\":\"10.21767/2248-9215.100017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: The main focus of this review article was to collate up to date knowledge with regard to significance of single nucleotide polymorphisms (SNPs) in various genes associated with tooth agenesis. Failure to develop complete set of teeth also called tooth agenesis is a common developmental abnormality manifested mainly as an isolated condition. This anomaly is also associated with many developmental syndromes. Methods: We reviewed the evidence from the literature with regard to SNPs in many genes associated with this developmental anomaly. The information contained in this review deals only with non-syndromic form of tooth agenesis. This condition generally affects third molars or one or few other permanent teeth, however, in some cases its severity is relatively prevalent. Results and Conclusions: Mutations in genes such as Msh homeobox 1 (MSX1), Paired box gene 9 (PAX9), Axis inhibitor protein 2 (AXIN2) and Ectodysplasin A (EDA) have been identified that are associated with the familial form of the disease. It has been shown that the phenotypes associated with these mutations indicate the involvement of more complex mechanisms. Clinical Significance: Evidence collected so far has immense clinical significance to clinical dentists in providing comprehensive guide outlining the role of these gene mutations (SNPs) in various genes and also how the patients affected with this condition will be clinically diagnosed and managed in future.\",\"PeriodicalId\":12012,\"journal\":{\"name\":\"European Journal of Experimental Biology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Experimental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21767/2248-9215.100017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Experimental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21767/2248-9215.100017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single Nucleotide Polymorphism (SNPs) in the Genes Associated with Tooth Agenesis
Objectives: The main focus of this review article was to collate up to date knowledge with regard to significance of single nucleotide polymorphisms (SNPs) in various genes associated with tooth agenesis. Failure to develop complete set of teeth also called tooth agenesis is a common developmental abnormality manifested mainly as an isolated condition. This anomaly is also associated with many developmental syndromes. Methods: We reviewed the evidence from the literature with regard to SNPs in many genes associated with this developmental anomaly. The information contained in this review deals only with non-syndromic form of tooth agenesis. This condition generally affects third molars or one or few other permanent teeth, however, in some cases its severity is relatively prevalent. Results and Conclusions: Mutations in genes such as Msh homeobox 1 (MSX1), Paired box gene 9 (PAX9), Axis inhibitor protein 2 (AXIN2) and Ectodysplasin A (EDA) have been identified that are associated with the familial form of the disease. It has been shown that the phenotypes associated with these mutations indicate the involvement of more complex mechanisms. Clinical Significance: Evidence collected so far has immense clinical significance to clinical dentists in providing comprehensive guide outlining the role of these gene mutations (SNPs) in various genes and also how the patients affected with this condition will be clinically diagnosed and managed in future.