利用机器学习工作流程监测四川盆地南部的地震活动性

Kang Wang, Jie Zhang, Ji Zhang, Zhangyu Wang, Huiyu Zhu
{"title":"利用机器学习工作流程监测四川盆地南部的地震活动性","authors":"Kang Wang,&nbsp;Jie Zhang,&nbsp;Ji Zhang,&nbsp;Zhangyu Wang,&nbsp;Huiyu Zhu","doi":"10.1016/j.eqrea.2023.100241","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses. In this study, we propose an automatic workflow based on machine learning (ML) to monitor seismicity in the southern Sichuan Basin of China. This workflow includes coherent event detection, phase picking, and earthquake location using three-component data from a seismic network. By combining PhaseNet, we develop an ML-based earthquake location model called PhaseLoc, to conduct real-time monitoring of the local seismicity. The approach allows us to use synthetic samples covering the entire study area to train PhaseLoc, addressing the problems of insufficient data samples, imbalanced data distribution, and unreliable labels when training with observed data. We apply the trained model to observed data recorded in the southern Sichuan Basin, China, between September 2018 and March 2019. The results show that the average differences in latitude, longitude, and depth are 5.7 ​km, 6.1 ​km, and 2 ​km, respectively, compared to the reference catalog. PhaseLoc combines all available phase information to make fast and reliable predictions, even if only a few phases are detected and picked. The proposed workflow may help real-time seismic monitoring in other regions as well.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 1","pages":"Article 100241"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000386/pdfft?md5=000545d80c5c533eeed4a1a61d570abb&pid=1-s2.0-S2772467023000386-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Monitoring seismicity in the southern Sichuan Basin using a machine learning workflow\",\"authors\":\"Kang Wang,&nbsp;Jie Zhang,&nbsp;Ji Zhang,&nbsp;Zhangyu Wang,&nbsp;Huiyu Zhu\",\"doi\":\"10.1016/j.eqrea.2023.100241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses. In this study, we propose an automatic workflow based on machine learning (ML) to monitor seismicity in the southern Sichuan Basin of China. This workflow includes coherent event detection, phase picking, and earthquake location using three-component data from a seismic network. By combining PhaseNet, we develop an ML-based earthquake location model called PhaseLoc, to conduct real-time monitoring of the local seismicity. The approach allows us to use synthetic samples covering the entire study area to train PhaseLoc, addressing the problems of insufficient data samples, imbalanced data distribution, and unreliable labels when training with observed data. We apply the trained model to observed data recorded in the southern Sichuan Basin, China, between September 2018 and March 2019. The results show that the average differences in latitude, longitude, and depth are 5.7 ​km, 6.1 ​km, and 2 ​km, respectively, compared to the reference catalog. PhaseLoc combines all available phase information to make fast and reliable predictions, even if only a few phases are detected and picked. The proposed workflow may help real-time seismic monitoring in other regions as well.</p></div>\",\"PeriodicalId\":100384,\"journal\":{\"name\":\"Earthquake Research Advances\",\"volume\":\"4 1\",\"pages\":\"Article 100241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772467023000386/pdfft?md5=000545d80c5c533eeed4a1a61d570abb&pid=1-s2.0-S2772467023000386-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Research Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772467023000386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467023000386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实时监测地震为及时进行地震预警和分析提供了极大的便利。在本研究中,我们提出了一种基于机器学习(ML)的自动工作流程,用于监测中国四川盆地南部的地震活动。该工作流程包括利用地震台网的三分量数据进行相干事件检测、相位选取和地震定位。结合 PhaseNet,我们开发了基于 ML 的地震定位模型 PhaseLoc,对当地地震进行实时监测。这种方法允许我们使用覆盖整个研究区域的合成样本来训练 PhaseLoc,解决了使用观测数据训练时数据样本不足、数据分布不平衡和标签不可靠的问题。我们将训练好的模型应用于 2018 年 9 月至 2019 年 3 月期间在中国四川盆地南部记录的观测数据。结果显示,与参考目录相比,纬度、经度和深度的平均差异分别为 5.7 千米、6.1 千米和 2 千米。PhaseLoc 结合了所有可用的相位信息,即使只检测和选取几个相位,也能做出快速可靠的预测。所提出的工作流程也有助于其他地区的实时地震监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring seismicity in the southern Sichuan Basin using a machine learning workflow

Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses. In this study, we propose an automatic workflow based on machine learning (ML) to monitor seismicity in the southern Sichuan Basin of China. This workflow includes coherent event detection, phase picking, and earthquake location using three-component data from a seismic network. By combining PhaseNet, we develop an ML-based earthquake location model called PhaseLoc, to conduct real-time monitoring of the local seismicity. The approach allows us to use synthetic samples covering the entire study area to train PhaseLoc, addressing the problems of insufficient data samples, imbalanced data distribution, and unreliable labels when training with observed data. We apply the trained model to observed data recorded in the southern Sichuan Basin, China, between September 2018 and March 2019. The results show that the average differences in latitude, longitude, and depth are 5.7 ​km, 6.1 ​km, and 2 ​km, respectively, compared to the reference catalog. PhaseLoc combines all available phase information to make fast and reliable predictions, even if only a few phases are detected and picked. The proposed workflow may help real-time seismic monitoring in other regions as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Site classification methodology using support vector machine: A study Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods Data merging methods for S-wave velocity and azimuthal anisotropy from different regions Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1