基于人工神经网络的电源变换器开路故障诊断方法

Zhan Li, Yuan Gao, Hao Ma, Xin Zhang
{"title":"基于人工神经网络的电源变换器开路故障诊断方法","authors":"Zhan Li, Yuan Gao, Hao Ma, Xin Zhang","doi":"10.1109/IECON43393.2020.9254607","DOIUrl":null,"url":null,"abstract":"This paper presents a new diagnosis method for open-switch faults in power converters based on Artificial Neural Network (ANN). The ANN inputs comprise both sampled signals and control signals. Only the signals of one switching period are used in the method. The combination of control signals and output signals enables the trained ANN to represent the internal characteristics of converter behaviors, which is crucial for fault diagnosis. Compared with other data-driven methods, the ANN approach is simpler, making it easier to be applied in microcontrollers. Besides, the ANN responds quickly to the fault due to the training with instant signals. Therefore, easy operation and fast diagnosis can be both achieved. Finally, the open-switch fault diagnosis in a two-level three-phase converter is studied for method validation. In this case, an ANN is trained with 9 input elements, 7 output elements, and 10 neurons in the hidden layer. Simulation results are given to demonstrate the good performance of the ANN method.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"57 1","pages":"2835-2839"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Simple ANN-Based Diagnosis Method for Open-Switch Faults in Power Converters\",\"authors\":\"Zhan Li, Yuan Gao, Hao Ma, Xin Zhang\",\"doi\":\"10.1109/IECON43393.2020.9254607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new diagnosis method for open-switch faults in power converters based on Artificial Neural Network (ANN). The ANN inputs comprise both sampled signals and control signals. Only the signals of one switching period are used in the method. The combination of control signals and output signals enables the trained ANN to represent the internal characteristics of converter behaviors, which is crucial for fault diagnosis. Compared with other data-driven methods, the ANN approach is simpler, making it easier to be applied in microcontrollers. Besides, the ANN responds quickly to the fault due to the training with instant signals. Therefore, easy operation and fast diagnosis can be both achieved. Finally, the open-switch fault diagnosis in a two-level three-phase converter is studied for method validation. In this case, an ANN is trained with 9 input elements, 7 output elements, and 10 neurons in the hidden layer. Simulation results are given to demonstrate the good performance of the ANN method.\",\"PeriodicalId\":13045,\"journal\":{\"name\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"57 1\",\"pages\":\"2835-2839\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON43393.2020.9254607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9254607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于人工神经网络的电力变换器开路故障诊断新方法。人工神经网络输入包括采样信号和控制信号。该方法只使用一个切换周期的信号。控制信号和输出信号的结合使训练后的人工神经网络能够表征变换器行为的内部特征,这对故障诊断至关重要。与其他数据驱动方法相比,人工神经网络方法更简单,更容易在微控制器中应用。此外,由于使用即时信号进行训练,神经网络对故障的响应速度很快。因此,既可以实现简单的操作,又可以实现快速诊断。最后,对两电平三相变换器的开路故障诊断进行了研究,验证了方法的有效性。在这种情况下,一个人工神经网络被训练有9个输入元素,7个输出元素,隐藏层有10个神经元。仿真结果验证了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Simple ANN-Based Diagnosis Method for Open-Switch Faults in Power Converters
This paper presents a new diagnosis method for open-switch faults in power converters based on Artificial Neural Network (ANN). The ANN inputs comprise both sampled signals and control signals. Only the signals of one switching period are used in the method. The combination of control signals and output signals enables the trained ANN to represent the internal characteristics of converter behaviors, which is crucial for fault diagnosis. Compared with other data-driven methods, the ANN approach is simpler, making it easier to be applied in microcontrollers. Besides, the ANN responds quickly to the fault due to the training with instant signals. Therefore, easy operation and fast diagnosis can be both achieved. Finally, the open-switch fault diagnosis in a two-level three-phase converter is studied for method validation. In this case, an ANN is trained with 9 input elements, 7 output elements, and 10 neurons in the hidden layer. Simulation results are given to demonstrate the good performance of the ANN method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A DCT/PET Submodule with Symmetrical Bipolar DC Outputs High-precision Sensorless Control Based on Magnetic Flux/Current Method for SRM Starting/Generating System Implementation of a Wireless Sensor Network Designed to Be Embedded in Reinforced Concrete H∞ Consensus Control for Discrete-Time Stochastic Multi-agent Systems with Infinite Markov Jumps Attitude stabilization for aircraft under angular velocity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1