过渡金属二硫族化合物异质层中线缺陷处的振动子

IF 1.3 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Comptes Rendus Physique Pub Date : 2021-03-01 DOI:10.5802/CRPHYS.50
Jianju Tang, Hongyi Yu, C. Shih, W. Yao
{"title":"过渡金属二硫族化合物异质层中线缺陷处的振动子","authors":"Jianju Tang, Hongyi Yu, C. Shih, W. Yao","doi":"10.5802/CRPHYS.50","DOIUrl":null,"url":null,"abstract":"In heterobilayers of 2D semiconductors, moiré pattern forms due to the inevitable lattice mismatch and twisting. Earlier works have shown that interlayer excitons in long-period moiré pattern experience a pronounced superlattice potential and have nanoscale patterned light-coupling properties. This leads to remarkable new possibilities to explore exciton physics and tailor optical properties. Line defects such as twin domain boundaries are commonly found in semiconducting transition metal dichalcogenides monolayer, which, in the context of a heterobilayer, leads to an interface between the R-stacking moiré and H-stacking moiré. Here, we show that such interface created by twin-domain boundary realizes a line-defect in the moiré superlattices for interlayer excitons, which localises a one-dimensional exciton mode of topological origin. The defect configuration in the moiré exciton superlattices can be continuously tuned by the interlayer translation and twisting angle, and is also a reflection of the atomic configuration of the domain boundary. The dispersion, wavefunction, and light coupling properties of the interface exciton modes are investigated at different superlattice defect configurations.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":"61 1","pages":"1-16"},"PeriodicalIF":1.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moiré excitons at line defects in transition metal dichalcogenides heterobilayers\",\"authors\":\"Jianju Tang, Hongyi Yu, C. Shih, W. Yao\",\"doi\":\"10.5802/CRPHYS.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In heterobilayers of 2D semiconductors, moiré pattern forms due to the inevitable lattice mismatch and twisting. Earlier works have shown that interlayer excitons in long-period moiré pattern experience a pronounced superlattice potential and have nanoscale patterned light-coupling properties. This leads to remarkable new possibilities to explore exciton physics and tailor optical properties. Line defects such as twin domain boundaries are commonly found in semiconducting transition metal dichalcogenides monolayer, which, in the context of a heterobilayer, leads to an interface between the R-stacking moiré and H-stacking moiré. Here, we show that such interface created by twin-domain boundary realizes a line-defect in the moiré superlattices for interlayer excitons, which localises a one-dimensional exciton mode of topological origin. The defect configuration in the moiré exciton superlattices can be continuously tuned by the interlayer translation and twisting angle, and is also a reflection of the atomic configuration of the domain boundary. The dispersion, wavefunction, and light coupling properties of the interface exciton modes are investigated at different superlattice defect configurations.\",\"PeriodicalId\":50650,\"journal\":{\"name\":\"Comptes Rendus Physique\",\"volume\":\"61 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Physique\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5802/CRPHYS.50\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/CRPHYS.50","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在二维半导体的异质层中,由于不可避免的晶格错配和扭曲而形成波纹图案。早期的研究表明,长周期莫尔条纹的层间激子具有明显的超晶格势,并具有纳米尺度的图案光耦合特性。这为探索激子物理和定制光学特性带来了非凡的新可能性。在半导体过渡金属二硫族化合物单层中,双畴边界等线缺陷是常见的,在异质层的情况下,这导致了r层和h层之间的界面。在这里,我们证明了这种由双畴边界产生的界面实现了层间激子的摩尔超晶格中的线缺陷,它定位了拓扑起源的一维激子模式。莫尔激子超晶格中的缺陷构型可以通过层间平移和扭转角度连续调谐,也是畴边界原子构型的反映。研究了不同超晶格缺陷构型下界面激子模的色散、波函数和光耦合特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moiré excitons at line defects in transition metal dichalcogenides heterobilayers
In heterobilayers of 2D semiconductors, moiré pattern forms due to the inevitable lattice mismatch and twisting. Earlier works have shown that interlayer excitons in long-period moiré pattern experience a pronounced superlattice potential and have nanoscale patterned light-coupling properties. This leads to remarkable new possibilities to explore exciton physics and tailor optical properties. Line defects such as twin domain boundaries are commonly found in semiconducting transition metal dichalcogenides monolayer, which, in the context of a heterobilayer, leads to an interface between the R-stacking moiré and H-stacking moiré. Here, we show that such interface created by twin-domain boundary realizes a line-defect in the moiré superlattices for interlayer excitons, which localises a one-dimensional exciton mode of topological origin. The defect configuration in the moiré exciton superlattices can be continuously tuned by the interlayer translation and twisting angle, and is also a reflection of the atomic configuration of the domain boundary. The dispersion, wavefunction, and light coupling properties of the interface exciton modes are investigated at different superlattice defect configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Physique
Comptes Rendus Physique 物理-天文与天体物理
CiteScore
2.80
自引率
0.00%
发文量
13
审稿时长
17.2 weeks
期刊介绍: The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences. Its objective is to enable researchers to quickly share their work with the international scientific community. The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity. From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication. The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.
期刊最新文献
Vibrations and Heat Transfer in Glasses: The Role Played by Disorder Astronomy, Atmospheres and Refraction: Foreword Detection of exoplanets: exploiting each property of light Organic Glass-Forming Liquids and the Concept of Fragility Hunting for Cold Exoplanets via Microlensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1