基于支持向量机的CT图像良恶性骨病变分类:核函数的比较

Rishav Kumar, M. Suhas
{"title":"基于支持向量机的CT图像良恶性骨病变分类:核函数的比较","authors":"Rishav Kumar, M. Suhas","doi":"10.1109/RTEICT.2016.7807941","DOIUrl":null,"url":null,"abstract":"Skeletal metastasis has tendency to develop from any kind of primary tumor. In the spine, the vertebral body is the most common site of metastasis which then extends to pedicle. About 2/3rd of the malignant tumor cases are found to develop metastasis. This work presents a Computer Aided Diagnosis (CAD) system that helps radiologists in differentiating malignant and benign bone lesions in the spine on Computed Tomography (CT) images usingSupport Vector Machines(SVM). The CT images are segmented using Snakes or Active Contour Model to retrieve the Region of Interest(ROI). From the segmented images, Haralick features are calculated. These features are then passed to the SVM classifier. With the help of SVM model generated, the data are classified into benign and malignant nodules. The performances of different kernel functions are compared.","PeriodicalId":6527,"journal":{"name":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"47 1","pages":"821-824"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Classification of benign and malignant bone lesions on CT imagesusing support vector machine: A comparison of kernel functions\",\"authors\":\"Rishav Kumar, M. Suhas\",\"doi\":\"10.1109/RTEICT.2016.7807941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeletal metastasis has tendency to develop from any kind of primary tumor. In the spine, the vertebral body is the most common site of metastasis which then extends to pedicle. About 2/3rd of the malignant tumor cases are found to develop metastasis. This work presents a Computer Aided Diagnosis (CAD) system that helps radiologists in differentiating malignant and benign bone lesions in the spine on Computed Tomography (CT) images usingSupport Vector Machines(SVM). The CT images are segmented using Snakes or Active Contour Model to retrieve the Region of Interest(ROI). From the segmented images, Haralick features are calculated. These features are then passed to the SVM classifier. With the help of SVM model generated, the data are classified into benign and malignant nodules. The performances of different kernel functions are compared.\",\"PeriodicalId\":6527,\"journal\":{\"name\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"47 1\",\"pages\":\"821-824\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2016.7807941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2016.7807941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

任何原发肿瘤都有发生骨转移的趋势。在脊柱中,椎体是最常见的转移部位,然后延伸到椎弓根。约2/3的恶性肿瘤发生转移。这项工作提出了一个计算机辅助诊断(CAD)系统,帮助放射科医生使用支持向量机(SVM)在计算机断层扫描(CT)图像上区分脊柱的恶性和良性骨病变。利用蛇形或活动轮廓模型对CT图像进行分割,提取感兴趣区域(ROI)。从分割后的图像中,计算出哈拉里克特征。然后将这些特征传递给SVM分类器。在生成的SVM模型的帮助下,将数据分为良性和恶性结节。比较了不同核函数的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of benign and malignant bone lesions on CT imagesusing support vector machine: A comparison of kernel functions
Skeletal metastasis has tendency to develop from any kind of primary tumor. In the spine, the vertebral body is the most common site of metastasis which then extends to pedicle. About 2/3rd of the malignant tumor cases are found to develop metastasis. This work presents a Computer Aided Diagnosis (CAD) system that helps radiologists in differentiating malignant and benign bone lesions in the spine on Computed Tomography (CT) images usingSupport Vector Machines(SVM). The CT images are segmented using Snakes or Active Contour Model to retrieve the Region of Interest(ROI). From the segmented images, Haralick features are calculated. These features are then passed to the SVM classifier. With the help of SVM model generated, the data are classified into benign and malignant nodules. The performances of different kernel functions are compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
I-Vector based depression level estimation technique A trust model in cloud computing based on fuzzy logic Time dispersion parameters for single bounce 2D geometrical channel including rain fading effect Information retrieval system using UNL for multilingual question answering Face recognition with CLNF for uncontrolled occlusion faces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1