{"title":"不同绝色图塔菌株对阿维菌素的抗性分析(鳞翅目:蠓科","authors":"M. Konuş","doi":"10.5505/TJB.2014.09327","DOIUrl":null,"url":null,"abstract":"Objective: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), tomato leafminer, is an oligophagous insect. Larvae of T. absoluta can destroy especially tomato plants which lead to important yield loss in this economically valuable crop. Chemical control through insecticides has been a main method of controlling it in farming areas all over the world. However, continues application of certain registered insecticide such as abamectin might lead to resistance development in T. absoluta. The aim of this study was to monitor resistance status of abamectin insecticide and analyse resistance mechanisms of this insecticide in T. absoluta field populations from three districts of Turkey by using bioassay and biochemical methods. Methods: Bioassays and Biochemical assays. Results: Bioassay results showed that while Adana and Antalya strain of T. absoluta showed low resistance (3.03and 2.3-fold) to abamectin insecticide, Ankara strain of T. absoluta was not resistant to abamectin (1.31-fold). Biochemical analysis displayed that CYP450-PNOD activities showed 2.55 and 1.95-fold increase compared to susceptible population in Adana and Antalya field populations, respectively. Furthermore, GST-CDNB activities showed statistically significant (p<0.05) 1.3-fold increase only in Adana population. Although EST-α-NA activities showed 3.41-fold increase only in Ankara field population, this field population did not display a significant resistancy to abamectin. Conclusion: Consequently, cytochrome P450 monooxygenase enzymes seemed to have a major role in abamectin resistance development in field populations of T. absoluta from Turkey. In addition, GSTs possibly have supportive role such as reducing oxidative stress that developed during metabolism of abamectin in resistant field populations of T. absoluta.","PeriodicalId":23355,"journal":{"name":"Turkish Journal of Biochemistry-turk Biyokimya Dergisi","volume":"43 1","pages":"291-297"},"PeriodicalIF":0.6000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Analysing resistance of different Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) strains to abamectin insecticide\",\"authors\":\"M. Konuş\",\"doi\":\"10.5505/TJB.2014.09327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), tomato leafminer, is an oligophagous insect. Larvae of T. absoluta can destroy especially tomato plants which lead to important yield loss in this economically valuable crop. Chemical control through insecticides has been a main method of controlling it in farming areas all over the world. However, continues application of certain registered insecticide such as abamectin might lead to resistance development in T. absoluta. The aim of this study was to monitor resistance status of abamectin insecticide and analyse resistance mechanisms of this insecticide in T. absoluta field populations from three districts of Turkey by using bioassay and biochemical methods. Methods: Bioassays and Biochemical assays. Results: Bioassay results showed that while Adana and Antalya strain of T. absoluta showed low resistance (3.03and 2.3-fold) to abamectin insecticide, Ankara strain of T. absoluta was not resistant to abamectin (1.31-fold). Biochemical analysis displayed that CYP450-PNOD activities showed 2.55 and 1.95-fold increase compared to susceptible population in Adana and Antalya field populations, respectively. Furthermore, GST-CDNB activities showed statistically significant (p<0.05) 1.3-fold increase only in Adana population. Although EST-α-NA activities showed 3.41-fold increase only in Ankara field population, this field population did not display a significant resistancy to abamectin. Conclusion: Consequently, cytochrome P450 monooxygenase enzymes seemed to have a major role in abamectin resistance development in field populations of T. absoluta from Turkey. In addition, GSTs possibly have supportive role such as reducing oxidative stress that developed during metabolism of abamectin in resistant field populations of T. absoluta.\",\"PeriodicalId\":23355,\"journal\":{\"name\":\"Turkish Journal of Biochemistry-turk Biyokimya Dergisi\",\"volume\":\"43 1\",\"pages\":\"291-297\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Biochemistry-turk Biyokimya Dergisi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5505/TJB.2014.09327\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Biochemistry-turk Biyokimya Dergisi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5505/TJB.2014.09327","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Analysing resistance of different Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) strains to abamectin insecticide
Objective: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), tomato leafminer, is an oligophagous insect. Larvae of T. absoluta can destroy especially tomato plants which lead to important yield loss in this economically valuable crop. Chemical control through insecticides has been a main method of controlling it in farming areas all over the world. However, continues application of certain registered insecticide such as abamectin might lead to resistance development in T. absoluta. The aim of this study was to monitor resistance status of abamectin insecticide and analyse resistance mechanisms of this insecticide in T. absoluta field populations from three districts of Turkey by using bioassay and biochemical methods. Methods: Bioassays and Biochemical assays. Results: Bioassay results showed that while Adana and Antalya strain of T. absoluta showed low resistance (3.03and 2.3-fold) to abamectin insecticide, Ankara strain of T. absoluta was not resistant to abamectin (1.31-fold). Biochemical analysis displayed that CYP450-PNOD activities showed 2.55 and 1.95-fold increase compared to susceptible population in Adana and Antalya field populations, respectively. Furthermore, GST-CDNB activities showed statistically significant (p<0.05) 1.3-fold increase only in Adana population. Although EST-α-NA activities showed 3.41-fold increase only in Ankara field population, this field population did not display a significant resistancy to abamectin. Conclusion: Consequently, cytochrome P450 monooxygenase enzymes seemed to have a major role in abamectin resistance development in field populations of T. absoluta from Turkey. In addition, GSTs possibly have supportive role such as reducing oxidative stress that developed during metabolism of abamectin in resistant field populations of T. absoluta.
期刊介绍:
Turkish Journal of Biochemistry (TJB), official journal of Turkish Biochemical Society, is issued electronically every 2 months. The main aim of the journal is to support the research and publishing culture by ensuring that every published manuscript has an added value and thus providing international acceptance of the “readability” of the manuscripts published in the journal.