磁热效应和磁性制冷剂材料

H. Wada
{"title":"磁热效应和磁性制冷剂材料","authors":"H. Wada","doi":"10.11311/JSCTA1974.33.98","DOIUrl":null,"url":null,"abstract":"Magnetic refrigeration is expected to be a future technology because of its energy efficiency and environmental safety. The concept of magnetic refrigeration is based on the magnetocaloric effects. In this article, we first review magnetocaloric effects and recent development of magnetic refrigerators. Then, we report the giant magnetocaloric effects of MnAs1-xSbx, which were recently discovered by our group. It is found that a first-order magnetic transition from a ferromagnetic state to a paramagnetic state is responsible for giant magnetocaloric effects in this system. Finally, the prospect of magnetic refrigerant materials at room temperature will be given.","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"44 1","pages":"98-103"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magnetocaloric Effect and Magnetic Refrigerant Materials\",\"authors\":\"H. Wada\",\"doi\":\"10.11311/JSCTA1974.33.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic refrigeration is expected to be a future technology because of its energy efficiency and environmental safety. The concept of magnetic refrigeration is based on the magnetocaloric effects. In this article, we first review magnetocaloric effects and recent development of magnetic refrigerators. Then, we report the giant magnetocaloric effects of MnAs1-xSbx, which were recently discovered by our group. It is found that a first-order magnetic transition from a ferromagnetic state to a paramagnetic state is responsible for giant magnetocaloric effects in this system. Finally, the prospect of magnetic refrigerant materials at room temperature will be given.\",\"PeriodicalId\":19096,\"journal\":{\"name\":\"Netsu Sokutei\",\"volume\":\"44 1\",\"pages\":\"98-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netsu Sokutei\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11311/JSCTA1974.33.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netsu Sokutei","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11311/JSCTA1974.33.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

磁制冷因其节能和环保的优点,被认为是一种未来的技术。磁制冷的概念是以磁热效应为基础的。本文首先综述了磁热效应和磁性制冷机的最新进展。然后,我们报道了最近我们小组发现的MnAs1-xSbx的巨磁热效应。从铁磁态到顺磁态的一阶磁跃迁是该体系产生巨磁热效应的原因。最后,展望了室温下磁性制冷剂材料的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetocaloric Effect and Magnetic Refrigerant Materials
Magnetic refrigeration is expected to be a future technology because of its energy efficiency and environmental safety. The concept of magnetic refrigeration is based on the magnetocaloric effects. In this article, we first review magnetocaloric effects and recent development of magnetic refrigerators. Then, we report the giant magnetocaloric effects of MnAs1-xSbx, which were recently discovered by our group. It is found that a first-order magnetic transition from a ferromagnetic state to a paramagnetic state is responsible for giant magnetocaloric effects in this system. Finally, the prospect of magnetic refrigerant materials at room temperature will be given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Stability of Materials in Lithium-Ion Cells Relationship between Vulcanizing Density and Thermal Diffusivity or Thermal Conductivity of Vulcanized Natural Rubber High Temperature Microbalance Technique for the Determination of the Metal Oxides Nonstoichiometry under Controlled Atmosphere Hyper-Mobile Water around Ions, Charged Polymers, and Proteins Observed with High Resolution Microwave Dielectric Spectroscopy Phase Behavior of Thermotropic Cubic Mesogens under Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1