{"title":"淘金热优化器:一种新的基于人口的元启发式算法","authors":"Kamran Zolfi","doi":"10.37190/ord230108","DOIUrl":null,"url":null,"abstract":"Today’s world is characterised by competitive environments, optimal resource utilization, and cost reduction, which has resulted in an increasing role for metaheuristic algorithms in solving complex modern problems. As a result, this paper introduces the gold rush optimizer (GRO), a population-based metaheuristic algorithm that simulates how gold-seekers prospected for gold during the Gold Rush Era using three key concepts of gold prospecting: migration, collaboration, and panning. The GRO algorithm is compared to twelve well-known metaheuristic algorithms on 29 benchmark test cases to assess the proposed approach’s performance. For scientific evaluation, the Friedman and Wilcoxon signed-rank tests are used. In addition to these test cases, the GRO algorithm is evaluated using three real-world engineering problems. The results indicated that the proposed algorithm was more capable than other algorithms in proposing qualitative and competitive solutions.","PeriodicalId":43244,"journal":{"name":"Operations Research and Decisions","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gold rush optimizer: A new population-based metaheuristic algorithm\",\"authors\":\"Kamran Zolfi\",\"doi\":\"10.37190/ord230108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s world is characterised by competitive environments, optimal resource utilization, and cost reduction, which has resulted in an increasing role for metaheuristic algorithms in solving complex modern problems. As a result, this paper introduces the gold rush optimizer (GRO), a population-based metaheuristic algorithm that simulates how gold-seekers prospected for gold during the Gold Rush Era using three key concepts of gold prospecting: migration, collaboration, and panning. The GRO algorithm is compared to twelve well-known metaheuristic algorithms on 29 benchmark test cases to assess the proposed approach’s performance. For scientific evaluation, the Friedman and Wilcoxon signed-rank tests are used. In addition to these test cases, the GRO algorithm is evaluated using three real-world engineering problems. The results indicated that the proposed algorithm was more capable than other algorithms in proposing qualitative and competitive solutions.\",\"PeriodicalId\":43244,\"journal\":{\"name\":\"Operations Research and Decisions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research and Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/ord230108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research and Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ord230108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Gold rush optimizer: A new population-based metaheuristic algorithm
Today’s world is characterised by competitive environments, optimal resource utilization, and cost reduction, which has resulted in an increasing role for metaheuristic algorithms in solving complex modern problems. As a result, this paper introduces the gold rush optimizer (GRO), a population-based metaheuristic algorithm that simulates how gold-seekers prospected for gold during the Gold Rush Era using three key concepts of gold prospecting: migration, collaboration, and panning. The GRO algorithm is compared to twelve well-known metaheuristic algorithms on 29 benchmark test cases to assess the proposed approach’s performance. For scientific evaluation, the Friedman and Wilcoxon signed-rank tests are used. In addition to these test cases, the GRO algorithm is evaluated using three real-world engineering problems. The results indicated that the proposed algorithm was more capable than other algorithms in proposing qualitative and competitive solutions.