利用心率变异性和呼吸信号对重症监护室进行睡眠分期。利用深度神经网络进行的探索性横断面研究。

Frontiers in network physiology Pub Date : 2023-02-27 eCollection Date: 2023-01-01 DOI:10.3389/fnetp.2023.1120390
Wolfgang Ganglberger, Parimala Velpula Krishnamurthy, Syed A Quadri, Ryan A Tesh, Abigail A Bucklin, Noor Adra, Madalena Da Silva Cardoso, Michael J Leone, Aashritha Hemmige, Subapriya Rajan, Ezhil Panneerselvam, Luis Paixao, Jasmine Higgins, Muhammad Abubakar Ayub, Yu-Ping Shao, Brian Coughlin, Haoqi Sun, Elissa M Ye, Sydney S Cash, B Taylor Thompson, Oluwaseun Akeju, David Kuller, Robert J Thomas, M Brandon Westover
{"title":"利用心率变异性和呼吸信号对重症监护室进行睡眠分期。利用深度神经网络进行的探索性横断面研究。","authors":"Wolfgang Ganglberger, Parimala Velpula Krishnamurthy, Syed A Quadri, Ryan A Tesh, Abigail A Bucklin, Noor Adra, Madalena Da Silva Cardoso, Michael J Leone, Aashritha Hemmige, Subapriya Rajan, Ezhil Panneerselvam, Luis Paixao, Jasmine Higgins, Muhammad Abubakar Ayub, Yu-Ping Shao, Brian Coughlin, Haoqi Sun, Elissa M Ye, Sydney S Cash, B Taylor Thompson, Oluwaseun Akeju, David Kuller, Robert J Thomas, M Brandon Westover","doi":"10.3389/fnetp.2023.1120390","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> To measure sleep in the intensive care unit (ICU), full polysomnography is impractical, while activity monitoring and subjective assessments are severely confounded. However, sleep is an intensely networked state, and reflected in numerous signals. Here, we explore the feasibility of estimating conventional sleep indices in the ICU with heart rate variability (HRV) and respiration signals using artificial intelligence methods <b>Methods:</b> We used deep learning models to stage sleep with HRV (through electrocardiogram) and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to surgical and medical ICUs, and in age and sex-matched sleep laboratory patients <b>Results:</b> We studied 102 adult patients in the ICU across multiple days and nights, and 220 patients in a clinical sleep laboratory. We found that sleep stages predicted by HRV- and breathing-based models showed agreement in 60% of the ICU data and in 81% of the sleep laboratory data. In the ICU, deep NREM (N2 + N3) proportion of total sleep duration was reduced (ICU 39%, sleep laboratory 57%, <i>p</i> < 0.01), REM proportion showed heavy-tailed distribution, and the number of wake transitions per hour of sleep (median 3.6) was comparable to sleep laboratory patients with sleep-disordered breathing (median 3.9). Sleep in the ICU was also fragmented, with 38% of sleep occurring during daytime hours. Finally, patients in the ICU showed faster and less variable breathing patterns compared to sleep laboratory patients <b>Conclusion:</b> The cardiovascular and respiratory networks encode sleep state information, which, together with artificial intelligence methods, can be utilized to measure sleep state in the ICU.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1120390"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013021/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sleep staging in the ICU with heart rate variability and breathing signals. An exploratory cross-sectional study using deep neural networks.\",\"authors\":\"Wolfgang Ganglberger, Parimala Velpula Krishnamurthy, Syed A Quadri, Ryan A Tesh, Abigail A Bucklin, Noor Adra, Madalena Da Silva Cardoso, Michael J Leone, Aashritha Hemmige, Subapriya Rajan, Ezhil Panneerselvam, Luis Paixao, Jasmine Higgins, Muhammad Abubakar Ayub, Yu-Ping Shao, Brian Coughlin, Haoqi Sun, Elissa M Ye, Sydney S Cash, B Taylor Thompson, Oluwaseun Akeju, David Kuller, Robert J Thomas, M Brandon Westover\",\"doi\":\"10.3389/fnetp.2023.1120390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> To measure sleep in the intensive care unit (ICU), full polysomnography is impractical, while activity monitoring and subjective assessments are severely confounded. However, sleep is an intensely networked state, and reflected in numerous signals. Here, we explore the feasibility of estimating conventional sleep indices in the ICU with heart rate variability (HRV) and respiration signals using artificial intelligence methods <b>Methods:</b> We used deep learning models to stage sleep with HRV (through electrocardiogram) and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to surgical and medical ICUs, and in age and sex-matched sleep laboratory patients <b>Results:</b> We studied 102 adult patients in the ICU across multiple days and nights, and 220 patients in a clinical sleep laboratory. We found that sleep stages predicted by HRV- and breathing-based models showed agreement in 60% of the ICU data and in 81% of the sleep laboratory data. In the ICU, deep NREM (N2 + N3) proportion of total sleep duration was reduced (ICU 39%, sleep laboratory 57%, <i>p</i> < 0.01), REM proportion showed heavy-tailed distribution, and the number of wake transitions per hour of sleep (median 3.6) was comparable to sleep laboratory patients with sleep-disordered breathing (median 3.9). Sleep in the ICU was also fragmented, with 38% of sleep occurring during daytime hours. Finally, patients in the ICU showed faster and less variable breathing patterns compared to sleep laboratory patients <b>Conclusion:</b> The cardiovascular and respiratory networks encode sleep state information, which, together with artificial intelligence methods, can be utilized to measure sleep state in the ICU.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"3 \",\"pages\":\"1120390\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013021/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2023.1120390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1120390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简介要测量重症监护室(ICU)中的睡眠情况,全面的多导睡眠监测是不切实际的,同时活动监测和主观评估也会受到严重干扰。然而,睡眠是一种高度网络化的状态,反映在众多信号中。在此,我们探讨了利用人工智能方法通过心率变异性(HRV)和呼吸信号估算重症监护室常规睡眠指数的可行性:我们使用深度学习模型,利用心率变异(通过心电图)和呼吸努力(通过可穿戴腰带)信号对外科和内科重症监护室的成年重症患者以及年龄和性别匹配的睡眠实验室患者的睡眠进行分期:我们对重症监护室的 102 名成年患者和临床睡眠实验室的 220 名患者进行了多天多夜的研究。我们发现,在 60% 的重症监护室数据和 81% 的睡眠实验室数据中,心率变异模型和呼吸模型预测的睡眠阶段显示出一致性。在重症监护室,深部 NREM(N2 + N3)占总睡眠时间的比例降低(重症监护室为 39%,睡眠实验室为 57%,P < 0.01),REM 比例呈重尾分布,每小时睡眠的觉醒转换次数(中位数为 3.6)与睡眠实验室的睡眠呼吸紊乱患者(中位数为 3.9)相当。重症监护室的睡眠也很零碎,38%的睡眠发生在白天。最后,与睡眠实验室患者相比,重症监护室患者的呼吸模式变化更快、更少:心血管和呼吸网络编码睡眠状态信息,结合人工智能方法,可用于测量重症监护室的睡眠状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sleep staging in the ICU with heart rate variability and breathing signals. An exploratory cross-sectional study using deep neural networks.

Introduction: To measure sleep in the intensive care unit (ICU), full polysomnography is impractical, while activity monitoring and subjective assessments are severely confounded. However, sleep is an intensely networked state, and reflected in numerous signals. Here, we explore the feasibility of estimating conventional sleep indices in the ICU with heart rate variability (HRV) and respiration signals using artificial intelligence methods Methods: We used deep learning models to stage sleep with HRV (through electrocardiogram) and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to surgical and medical ICUs, and in age and sex-matched sleep laboratory patients Results: We studied 102 adult patients in the ICU across multiple days and nights, and 220 patients in a clinical sleep laboratory. We found that sleep stages predicted by HRV- and breathing-based models showed agreement in 60% of the ICU data and in 81% of the sleep laboratory data. In the ICU, deep NREM (N2 + N3) proportion of total sleep duration was reduced (ICU 39%, sleep laboratory 57%, p < 0.01), REM proportion showed heavy-tailed distribution, and the number of wake transitions per hour of sleep (median 3.6) was comparable to sleep laboratory patients with sleep-disordered breathing (median 3.9). Sleep in the ICU was also fragmented, with 38% of sleep occurring during daytime hours. Finally, patients in the ICU showed faster and less variable breathing patterns compared to sleep laboratory patients Conclusion: The cardiovascular and respiratory networks encode sleep state information, which, together with artificial intelligence methods, can be utilized to measure sleep state in the ICU.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. Significant nocturnal wakefulness after sleep onset in metabolic dysfunction-associated steatotic liver disease. Networks through the lens of high-frequency oscillations. Constructing representative group networks from tractography: lessons from a dynamical approach. Physiological signal analysis and open science using the Julia language and associated software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1