{"title":"用于分析电池组效率和温度的电池组电学和热建模","authors":"Md. Ashifur Rahman, A. Baki","doi":"10.1515/ehs-2023-0039","DOIUrl":null,"url":null,"abstract":"Abstract Efficiency of the battery pack largely depends on the resistive losses and heat generation between the interconnections of the battery cells. Grouping of battery cells usually is done in different ways in industries. However, losses vary depending on applications or states of electric vehicle (EV). Therefore, it is necessary to determine the efficiency and heat generation in battery cells as well as battery packs. In practical situations, some battery cells are charged rapidly in comparison to other battery cells. On the other hand, when an EV is in running condition some battery cells are discharged rapidly. As a results battery pack cannot provide better efficiency and its life span is reduced. As an alternative option the inter-cell connection of battery package is needed to reconfigure in an optimized way. In this paper firstly, a battery pack with switches is modeled and then efficiency and temperature variation with respect to time are determined. Then, an experimental setup is investigated to measure the efficiency and temperature rise with respect to time. Results, explained in the paper, demonstrate that battery pack with switches increases the efficiency if it is measured after switching (97–98 %), while temperature increases from 25 °C to 50 °C for different C-rates.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical and thermal modeling of battery cell grouping for analyzing battery pack efficiency and temperature\",\"authors\":\"Md. Ashifur Rahman, A. Baki\",\"doi\":\"10.1515/ehs-2023-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Efficiency of the battery pack largely depends on the resistive losses and heat generation between the interconnections of the battery cells. Grouping of battery cells usually is done in different ways in industries. However, losses vary depending on applications or states of electric vehicle (EV). Therefore, it is necessary to determine the efficiency and heat generation in battery cells as well as battery packs. In practical situations, some battery cells are charged rapidly in comparison to other battery cells. On the other hand, when an EV is in running condition some battery cells are discharged rapidly. As a results battery pack cannot provide better efficiency and its life span is reduced. As an alternative option the inter-cell connection of battery package is needed to reconfigure in an optimized way. In this paper firstly, a battery pack with switches is modeled and then efficiency and temperature variation with respect to time are determined. Then, an experimental setup is investigated to measure the efficiency and temperature rise with respect to time. Results, explained in the paper, demonstrate that battery pack with switches increases the efficiency if it is measured after switching (97–98 %), while temperature increases from 25 °C to 50 °C for different C-rates.\",\"PeriodicalId\":36885,\"journal\":{\"name\":\"Energy Harvesting and Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Harvesting and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ehs-2023-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2023-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Electrical and thermal modeling of battery cell grouping for analyzing battery pack efficiency and temperature
Abstract Efficiency of the battery pack largely depends on the resistive losses and heat generation between the interconnections of the battery cells. Grouping of battery cells usually is done in different ways in industries. However, losses vary depending on applications or states of electric vehicle (EV). Therefore, it is necessary to determine the efficiency and heat generation in battery cells as well as battery packs. In practical situations, some battery cells are charged rapidly in comparison to other battery cells. On the other hand, when an EV is in running condition some battery cells are discharged rapidly. As a results battery pack cannot provide better efficiency and its life span is reduced. As an alternative option the inter-cell connection of battery package is needed to reconfigure in an optimized way. In this paper firstly, a battery pack with switches is modeled and then efficiency and temperature variation with respect to time are determined. Then, an experimental setup is investigated to measure the efficiency and temperature rise with respect to time. Results, explained in the paper, demonstrate that battery pack with switches increases the efficiency if it is measured after switching (97–98 %), while temperature increases from 25 °C to 50 °C for different C-rates.