膜附近带电粒子的定向运动

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Acta Physica Sinica Pub Date : 2023-01-01 DOI:10.7498/aps.72.20220567
Zhou Hongwei, Ouyang Wenze, Xu Shenghua
{"title":"膜附近带电粒子的定向运动","authors":"Zhou Hongwei, Ouyang Wenze, Xu Shenghua","doi":"10.7498/aps.72.20220567","DOIUrl":null,"url":null,"abstract":"Membrane has widely applications in the field of filtration and separation, but due to the attraction or repulsion exerted by the membrane, the particles will experience directional motion. As a result, two totally opposite effects, particle enrichment and exclusion zone, take place in the vicinity of the membrane, and the underlying reason is still not clear. In the paper, colloidal particles with negative surface charge was used as a model substance, with the advantages of monitoring the particles concentration in a real time and in situ way, to investigate the influence of cellulose membrane to the movement of particles. The experimental results showed that particles enriched in the vicinity of the membrane. The diffusiophoresis effect originates from the tiny amount ions released by the film is the main reason of the directional movement of the charged particles. Based on the two mechanisms of diffusiophoresis and diffusion, we construct a model and make relevant numerical calculation, and the numerical results are qualitatively consistent with the experimental results. Moreover, in addition to the longitudinal motion of the particles towards the filter membrane, diffusio-osmotic flow and particles lateral diffusion also result in the migration of particles towards to the container wall, and further increase particles number near the wall.","PeriodicalId":6995,"journal":{"name":"Acta Physica Sinica","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIRECTIONAL MOTION OF CHARGED PARTICLES NEAR MEMBRANE\",\"authors\":\"Zhou Hongwei, Ouyang Wenze, Xu Shenghua\",\"doi\":\"10.7498/aps.72.20220567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane has widely applications in the field of filtration and separation, but due to the attraction or repulsion exerted by the membrane, the particles will experience directional motion. As a result, two totally opposite effects, particle enrichment and exclusion zone, take place in the vicinity of the membrane, and the underlying reason is still not clear. In the paper, colloidal particles with negative surface charge was used as a model substance, with the advantages of monitoring the particles concentration in a real time and in situ way, to investigate the influence of cellulose membrane to the movement of particles. The experimental results showed that particles enriched in the vicinity of the membrane. The diffusiophoresis effect originates from the tiny amount ions released by the film is the main reason of the directional movement of the charged particles. Based on the two mechanisms of diffusiophoresis and diffusion, we construct a model and make relevant numerical calculation, and the numerical results are qualitatively consistent with the experimental results. Moreover, in addition to the longitudinal motion of the particles towards the filter membrane, diffusio-osmotic flow and particles lateral diffusion also result in the migration of particles towards to the container wall, and further increase particles number near the wall.\",\"PeriodicalId\":6995,\"journal\":{\"name\":\"Acta Physica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Sinica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20220567\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Sinica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20220567","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

膜在过滤和分离领域有着广泛的应用,但由于膜的吸引或排斥作用,颗粒会进行定向运动。因此,在膜附近发生了两种完全相反的作用,即颗粒富集和隔离区,其根本原因尚不清楚。本文以表面带负电荷的胶体颗粒为模型物质,利用实时、现场监测颗粒浓度的优势,研究纤维素膜对颗粒运动的影响。实验结果表明,颗粒在膜附近富集。扩散泳动效应源于薄膜释放的微量离子,是带电粒子定向运动的主要原因。基于扩散泳动和扩散两种机制,构建了模型并进行了相应的数值计算,数值结果与实验结果定性一致。此外,除了颗粒向过滤膜的纵向运动外,扩散渗透流动和颗粒横向扩散也导致颗粒向容器壁的迁移,进一步增加了容器壁附近的颗粒数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DIRECTIONAL MOTION OF CHARGED PARTICLES NEAR MEMBRANE
Membrane has widely applications in the field of filtration and separation, but due to the attraction or repulsion exerted by the membrane, the particles will experience directional motion. As a result, two totally opposite effects, particle enrichment and exclusion zone, take place in the vicinity of the membrane, and the underlying reason is still not clear. In the paper, colloidal particles with negative surface charge was used as a model substance, with the advantages of monitoring the particles concentration in a real time and in situ way, to investigate the influence of cellulose membrane to the movement of particles. The experimental results showed that particles enriched in the vicinity of the membrane. The diffusiophoresis effect originates from the tiny amount ions released by the film is the main reason of the directional movement of the charged particles. Based on the two mechanisms of diffusiophoresis and diffusion, we construct a model and make relevant numerical calculation, and the numerical results are qualitatively consistent with the experimental results. Moreover, in addition to the longitudinal motion of the particles towards the filter membrane, diffusio-osmotic flow and particles lateral diffusion also result in the migration of particles towards to the container wall, and further increase particles number near the wall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Sinica
Acta Physica Sinica 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
期刊最新文献
Simulation method of urban evacuation based on mesoscopic cellular automata Medium Correction to Gravitational Form Factors Research progress of applications of freestanding single crystal oxide thin film Research progress of ultra-high spatiotemporal resolved microscopy High-fidelity single-qubit gates of a strong driven singlet-triplet qubit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1