Bahig M. Atia, M. Cheira, M. A. Hassanin, Hassan S. El-Gendy, M. E. Elawady, Hazem K.A. Sarhan, H. Radwan, Sameh H. Negm, M. Gado
{"title":"新合成的聚乙烯醇通过氨基甲酸乙酯连接剂锚定没食子酸片段,提高硼的回收率","authors":"Bahig M. Atia, M. Cheira, M. A. Hassanin, Hassan S. El-Gendy, M. E. Elawady, Hazem K.A. Sarhan, H. Radwan, Sameh H. Negm, M. Gado","doi":"10.1080/01496395.2023.2252985","DOIUrl":null,"url":null,"abstract":"ABSTRACT An innovative promising Gallic acid anchored poly vinyl alcohol via ethyl carbamate linker (PVA-EC-GA), was functionalized to extract boron from a tourmaline ore sample from Sikait area in South Eastern Desert of Egypt, which assaying 10.45% boron oxide. Specifications for PVA-EC-GA composite were accomplished by employing a variety of methods including XPS, FT-IR, EDX, BET, 1 H-NMR, TGA, 13C-NMR and GC-MS analyses, which assure an equitable prepare of PVA-EC-GA. Investigational measurements, namely: pH, agitation time, initial concentration of boron, composite dose, co-ions, temp. and agents of eluting, have been improved. At 25°C, pH 10, 20 min agitation and 0.0092 mol/L boron ions, PVA-EC-GA composite has an extreme uptake capacity of 43.75 mg per gram which is equivalent to 175 mg/L boron ions. From the isotherm modeling, Langmuir’s quite fitting the practical data. Conferring to kinetic modeling, pseudo-second order kinetic model well predicted the kinetics of boron ions adsorption by PVA-EC-GA giving a theoretical retention capacity of 43.86 mg/g. Thermodynamic prospects expose that the adsorption process was expected as an exothermic, spontaneous, and preferable adsorption at low temp. Boron ions can be eluted from the loaded composite, by 0.5 M H2SO4 with a 97% effectiveness","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"30 1","pages":"2307 - 2330"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced boron recovery by a new synthesized polyvinyl alcohol anchored gallic acid moiety via ethyl carbamate linker\",\"authors\":\"Bahig M. Atia, M. Cheira, M. A. Hassanin, Hassan S. El-Gendy, M. E. Elawady, Hazem K.A. Sarhan, H. Radwan, Sameh H. Negm, M. Gado\",\"doi\":\"10.1080/01496395.2023.2252985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT An innovative promising Gallic acid anchored poly vinyl alcohol via ethyl carbamate linker (PVA-EC-GA), was functionalized to extract boron from a tourmaline ore sample from Sikait area in South Eastern Desert of Egypt, which assaying 10.45% boron oxide. Specifications for PVA-EC-GA composite were accomplished by employing a variety of methods including XPS, FT-IR, EDX, BET, 1 H-NMR, TGA, 13C-NMR and GC-MS analyses, which assure an equitable prepare of PVA-EC-GA. Investigational measurements, namely: pH, agitation time, initial concentration of boron, composite dose, co-ions, temp. and agents of eluting, have been improved. At 25°C, pH 10, 20 min agitation and 0.0092 mol/L boron ions, PVA-EC-GA composite has an extreme uptake capacity of 43.75 mg per gram which is equivalent to 175 mg/L boron ions. From the isotherm modeling, Langmuir’s quite fitting the practical data. Conferring to kinetic modeling, pseudo-second order kinetic model well predicted the kinetics of boron ions adsorption by PVA-EC-GA giving a theoretical retention capacity of 43.86 mg/g. Thermodynamic prospects expose that the adsorption process was expected as an exothermic, spontaneous, and preferable adsorption at low temp. Boron ions can be eluted from the loaded composite, by 0.5 M H2SO4 with a 97% effectiveness\",\"PeriodicalId\":21680,\"journal\":{\"name\":\"Separation Science and Technology\",\"volume\":\"30 1\",\"pages\":\"2307 - 2330\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01496395.2023.2252985\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2252985","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced boron recovery by a new synthesized polyvinyl alcohol anchored gallic acid moiety via ethyl carbamate linker
ABSTRACT An innovative promising Gallic acid anchored poly vinyl alcohol via ethyl carbamate linker (PVA-EC-GA), was functionalized to extract boron from a tourmaline ore sample from Sikait area in South Eastern Desert of Egypt, which assaying 10.45% boron oxide. Specifications for PVA-EC-GA composite were accomplished by employing a variety of methods including XPS, FT-IR, EDX, BET, 1 H-NMR, TGA, 13C-NMR and GC-MS analyses, which assure an equitable prepare of PVA-EC-GA. Investigational measurements, namely: pH, agitation time, initial concentration of boron, composite dose, co-ions, temp. and agents of eluting, have been improved. At 25°C, pH 10, 20 min agitation and 0.0092 mol/L boron ions, PVA-EC-GA composite has an extreme uptake capacity of 43.75 mg per gram which is equivalent to 175 mg/L boron ions. From the isotherm modeling, Langmuir’s quite fitting the practical data. Conferring to kinetic modeling, pseudo-second order kinetic model well predicted the kinetics of boron ions adsorption by PVA-EC-GA giving a theoretical retention capacity of 43.86 mg/g. Thermodynamic prospects expose that the adsorption process was expected as an exothermic, spontaneous, and preferable adsorption at low temp. Boron ions can be eluted from the loaded composite, by 0.5 M H2SO4 with a 97% effectiveness
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.