气候、年轮生长与长叶松球果生产的关系

Q4 Agricultural and Biological Sciences International Journal of Plant Biology Pub Date : 2023-04-25 DOI:10.3390/ijpb14020033
Kimberly A. Bowman, Xiongwen Chen
{"title":"气候、年轮生长与长叶松球果生产的关系","authors":"Kimberly A. Bowman, Xiongwen Chen","doi":"10.3390/ijpb14020033","DOIUrl":null,"url":null,"abstract":"Historically abundant longleaf pine (Pinus palustris Mill.) trees were once a leading source of profit and ecosystem services across the southeastern United States. The widespread decline in longleaf numbers following European colonization has prompted substantial restoration efforts, though much is still not understood about longleaf growth and reproductive processes. In this study, we used Pearson and regression correlation analysis to quantify the relationship between cone production, radial growth, and climate signals in longleaf pine trees at three sites across their range. We documented a high amount of intersite variability; trees at all three sites experienced significant relationships between reproduction, radial growth, and climate, though in different and sometimes contrasting ways. We found a roughly equivalent number of significant cone growth and climate correlations with extreme climate events (e.g., heat stress, hurricane frequency) as with average climate conditions, and highlight the need to consider both over multiple spans of time. This study provides a new understanding of how climate variables relate to the relationship between growth and reproduction in longleaf pine trees.","PeriodicalId":38827,"journal":{"name":"International Journal of Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Relationships between Climate, Tree-Ring Growth, and Cone Production in Longleaf Pine\",\"authors\":\"Kimberly A. Bowman, Xiongwen Chen\",\"doi\":\"10.3390/ijpb14020033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historically abundant longleaf pine (Pinus palustris Mill.) trees were once a leading source of profit and ecosystem services across the southeastern United States. The widespread decline in longleaf numbers following European colonization has prompted substantial restoration efforts, though much is still not understood about longleaf growth and reproductive processes. In this study, we used Pearson and regression correlation analysis to quantify the relationship between cone production, radial growth, and climate signals in longleaf pine trees at three sites across their range. We documented a high amount of intersite variability; trees at all three sites experienced significant relationships between reproduction, radial growth, and climate, though in different and sometimes contrasting ways. We found a roughly equivalent number of significant cone growth and climate correlations with extreme climate events (e.g., heat stress, hurricane frequency) as with average climate conditions, and highlight the need to consider both over multiple spans of time. This study provides a new understanding of how climate variables relate to the relationship between growth and reproduction in longleaf pine trees.\",\"PeriodicalId\":38827,\"journal\":{\"name\":\"International Journal of Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijpb14020033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijpb14020033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

历史上丰富的长叶松(Pinus palustris Mill.)树木曾经是美国东南部利润和生态系统服务的主要来源。欧洲殖民后,长叶植物数量的广泛下降促使了大量的恢复努力,尽管对长叶植物的生长和繁殖过程仍有很多不了解。在本研究中,我们使用Pearson和回归相关分析来量化长叶松的球果产量、径向生长和气候信号之间的关系。我们记录了大量的站点间变异性;这三个地点的树木都经历了繁殖、径向生长和气候之间的重要关系,尽管方式不同,有时甚至是截然相反。我们发现,与平均气候条件相比,极端气候事件(如热应力、飓风频率)与显著的锥体生长和气候相关性的数量大致相当,并强调需要在多个时间跨度内考虑这两者。该研究为气候变量与长叶松生长与繁殖关系的关系提供了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Relationships between Climate, Tree-Ring Growth, and Cone Production in Longleaf Pine
Historically abundant longleaf pine (Pinus palustris Mill.) trees were once a leading source of profit and ecosystem services across the southeastern United States. The widespread decline in longleaf numbers following European colonization has prompted substantial restoration efforts, though much is still not understood about longleaf growth and reproductive processes. In this study, we used Pearson and regression correlation analysis to quantify the relationship between cone production, radial growth, and climate signals in longleaf pine trees at three sites across their range. We documented a high amount of intersite variability; trees at all three sites experienced significant relationships between reproduction, radial growth, and climate, though in different and sometimes contrasting ways. We found a roughly equivalent number of significant cone growth and climate correlations with extreme climate events (e.g., heat stress, hurricane frequency) as with average climate conditions, and highlight the need to consider both over multiple spans of time. This study provides a new understanding of how climate variables relate to the relationship between growth and reproduction in longleaf pine trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plant Biology
International Journal of Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
2.00
自引率
0.00%
发文量
44
审稿时长
10 weeks
期刊介绍: The International Journal of Plant Biology is an Open Access, online-only, peer-reviewed journal that considers scientific papers in all different subdisciplines of plant biology, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, mycology and phytopathology.
期刊最新文献
Alteration of Photosynthetic and Antioxidant Gene Expression in Sugarcane Infected by Multiple Mosaic Viruses Algal Adaptation to Environmental Stresses: Lipidomics Research Drought Stress Tolerance in Rice: Physiological and Biochemical Insights Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions Maize Inbred Leaf and Stalk Tissue Resistance to the Pathogen Fusarium graminearum Can Influence Control Efficacy of Beauveria bassiana towards European Corn Borers and Fall Armyworms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1