宽带机电二极管:带机电谐振器的弱非线性超材料的声学非互易性

IF 1.9 4区 工程技术 Q2 ACOUSTICS Journal of Vibration and Acoustics-Transactions of the Asme Pub Date : 2022-07-08 DOI:10.1115/1.4054962
M. Bukhari, O. Barry
{"title":"宽带机电二极管:带机电谐振器的弱非线性超材料的声学非互易性","authors":"M. Bukhari, O. Barry","doi":"10.1115/1.4054962","DOIUrl":null,"url":null,"abstract":"\n Recent attention has been given to acoustic non-reciprocity in metamaterials with nonlinearity. However, the study of asymmetric wave propagation has been limited to mechanical diodes only. Prior works on electromechanical rectifiers or diodes using passive mechanisms are rare in the literature. This problem is investigated here by analytically and numerically studying a combination of nonlinear and linear metamaterials coupled with electromechanical resonators. The nonlinearity of the system stems from the chain in one case and from the electromechanical resonator in another. The method of multiple scales is used to obtain analytical expressions for the dispersion curves. Numerical examples show potential for wider operation range of electromechanical diode, considerable harvested power, and significant frequency shift. The observed frequency shift is demonstrated using spectro-spatial analyses and it is used to construct an electromechanical diode to guide the wave to propagate in one direction only. This only allows signal sensing for waves propagating in one direction and rejects signals in any other direction. The performance of this electromechanical diode is evaluated using the transmission ratio and the asymmetric ratio for a transient input signal. Design guidelines are provided to obtain the best electromechanical diode performance. The presented analyses show high asymmetry ratio for directional-biased wave propagation in the medium-wavelength limit for the case of nonlinear chain. Indeed, the present asymmetric and transmission ratios are higher than those reported in the literature for a mechanical diode. The operation frequencies can also be broadened to the long-wavelength limit frequencies using the resonator nonlinearity.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband electromechanical diode: acoustic non-reciprocity in weakly nonlinear metamaterials with electromechanical resonators\",\"authors\":\"M. Bukhari, O. Barry\",\"doi\":\"10.1115/1.4054962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recent attention has been given to acoustic non-reciprocity in metamaterials with nonlinearity. However, the study of asymmetric wave propagation has been limited to mechanical diodes only. Prior works on electromechanical rectifiers or diodes using passive mechanisms are rare in the literature. This problem is investigated here by analytically and numerically studying a combination of nonlinear and linear metamaterials coupled with electromechanical resonators. The nonlinearity of the system stems from the chain in one case and from the electromechanical resonator in another. The method of multiple scales is used to obtain analytical expressions for the dispersion curves. Numerical examples show potential for wider operation range of electromechanical diode, considerable harvested power, and significant frequency shift. The observed frequency shift is demonstrated using spectro-spatial analyses and it is used to construct an electromechanical diode to guide the wave to propagate in one direction only. This only allows signal sensing for waves propagating in one direction and rejects signals in any other direction. The performance of this electromechanical diode is evaluated using the transmission ratio and the asymmetric ratio for a transient input signal. Design guidelines are provided to obtain the best electromechanical diode performance. The presented analyses show high asymmetry ratio for directional-biased wave propagation in the medium-wavelength limit for the case of nonlinear chain. Indeed, the present asymmetric and transmission ratios are higher than those reported in the literature for a mechanical diode. The operation frequencies can also be broadened to the long-wavelength limit frequencies using the resonator nonlinearity.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054962\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054962","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对非线性超材料的声学非互易性进行了研究。然而,对非对称波传播的研究仅限于机械二极管。先前关于机电整流器或二极管使用无源机构的工作在文献中是罕见的。本文对非线性和线性超材料与机电谐振器耦合的组合进行了解析和数值研究。系统的非线性在一种情况下来自链条,在另一种情况下来自机电谐振器。采用多尺度法得到了色散曲线的解析表达式。数值算例表明,机电二极管具有更宽的工作范围、可观的功率收获和显著的频移的潜力。利用光谱空间分析证明了观测到的频移,并将其用于构造一个机电二极管,以引导波仅向一个方向传播。这只允许信号传感在一个方向上传播的波和拒绝信号在任何其他方向。利用瞬态输入信号的传输比和非对称比对该机电二极管的性能进行了评价。提供了获得最佳机电二极管性能的设计准则。本文的分析表明,在非线性链的情况下,在中波长极限下,偏向性波传播的不对称率很高。事实上,目前的不对称和传输比高于文献报道的机械二极管。利用谐振腔的非线性特性,还可以将工作频率扩展到长波极限频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Broadband electromechanical diode: acoustic non-reciprocity in weakly nonlinear metamaterials with electromechanical resonators
Recent attention has been given to acoustic non-reciprocity in metamaterials with nonlinearity. However, the study of asymmetric wave propagation has been limited to mechanical diodes only. Prior works on electromechanical rectifiers or diodes using passive mechanisms are rare in the literature. This problem is investigated here by analytically and numerically studying a combination of nonlinear and linear metamaterials coupled with electromechanical resonators. The nonlinearity of the system stems from the chain in one case and from the electromechanical resonator in another. The method of multiple scales is used to obtain analytical expressions for the dispersion curves. Numerical examples show potential for wider operation range of electromechanical diode, considerable harvested power, and significant frequency shift. The observed frequency shift is demonstrated using spectro-spatial analyses and it is used to construct an electromechanical diode to guide the wave to propagate in one direction only. This only allows signal sensing for waves propagating in one direction and rejects signals in any other direction. The performance of this electromechanical diode is evaluated using the transmission ratio and the asymmetric ratio for a transient input signal. Design guidelines are provided to obtain the best electromechanical diode performance. The presented analyses show high asymmetry ratio for directional-biased wave propagation in the medium-wavelength limit for the case of nonlinear chain. Indeed, the present asymmetric and transmission ratios are higher than those reported in the literature for a mechanical diode. The operation frequencies can also be broadened to the long-wavelength limit frequencies using the resonator nonlinearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
期刊最新文献
Bone conduction: A linear viscoelastic mixed lumped-continuum model for the human skin in the acoustic frequency range A Multiple-Burner Approach to Passive Control of Multiple Longitudinal Acoustic Instabilities in Combustors Widening the Band Gaps of Hourglass Lattice Truss Core Sandwich Structures for Broadband Vibration Suppression Material Extrusion on an Ultrasonic Air Bed for 3D Printing Nonlinear Energy Transfer of a Spar-Floater System using the Inerter Pendulum Vibration Absorber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1