局部位平面域三维定向任意和圆形扫描模式的生物医学图像检索

Q3 Computer Science 中国图象图形学报 Pub Date : 2023-06-01 DOI:10.18178/joig.11.2.212-226
D. Mahanta, D. Hazarika, V. K. Nath
{"title":"局部位平面域三维定向任意和圆形扫描模式的生物医学图像检索","authors":"D. Mahanta, D. Hazarika, V. K. Nath","doi":"10.18178/joig.11.2.212-226","DOIUrl":null,"url":null,"abstract":"A new feature descriptor called local bit-plane domain 3D oriented arbitrary and circular shaped scanning pattern (LB-3D-OACSP) is proposed for biomedical image retrieval in this study. Unlike the circular, zigzag and other scanning structures, the LB-3D-OACSP descriptor calculates the association between reference-pixel and its surrounding pixels in bit-plane domain in a 3D plane using multi-directional 3D arbitrary and 3D circular shaped scanning patterns. In contrast to other scanning structures, the multi-directional 3-D arbitrary shaped patterns provide more continual angular dissimilarity among the sampling positions with the aim to capture more frequent changes in the local textures. The total of sixteen number of discriminative 3D arbitrary and 3D circular shaped patterns oriented in various directions are applied on a 3D plane constructed using respective bit-planes of three multi-scale images which ensures the maximum extraction of inter-scale geometrical information across the scales which very effectively captures not only the uniform but non-uniform textures too. The multi-scale images are generated by processing the input image with Gaussian filter banks generating three multi-scale images. The LB-3D-OACSP descriptor is able to capture most of the very fine to coarse image textures through encoding of bit-planes. The performance of LB-3D-OACSP is tested on three popular biomedical image databases both in terms of % average retrieval precision (ARP) and % average retrieval recall (ARR). The experiments demonstrate an encouraging enhancement in terms of %ARP and %ARR as compared to many existing state of the art descriptors.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Bit-Plane Domain 3D Oriented Arbitrary and Circular Shaped Scanning Patterns for Bio-Medical Image Retrieval\",\"authors\":\"D. Mahanta, D. Hazarika, V. K. Nath\",\"doi\":\"10.18178/joig.11.2.212-226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new feature descriptor called local bit-plane domain 3D oriented arbitrary and circular shaped scanning pattern (LB-3D-OACSP) is proposed for biomedical image retrieval in this study. Unlike the circular, zigzag and other scanning structures, the LB-3D-OACSP descriptor calculates the association between reference-pixel and its surrounding pixels in bit-plane domain in a 3D plane using multi-directional 3D arbitrary and 3D circular shaped scanning patterns. In contrast to other scanning structures, the multi-directional 3-D arbitrary shaped patterns provide more continual angular dissimilarity among the sampling positions with the aim to capture more frequent changes in the local textures. The total of sixteen number of discriminative 3D arbitrary and 3D circular shaped patterns oriented in various directions are applied on a 3D plane constructed using respective bit-planes of three multi-scale images which ensures the maximum extraction of inter-scale geometrical information across the scales which very effectively captures not only the uniform but non-uniform textures too. The multi-scale images are generated by processing the input image with Gaussian filter banks generating three multi-scale images. The LB-3D-OACSP descriptor is able to capture most of the very fine to coarse image textures through encoding of bit-planes. The performance of LB-3D-OACSP is tested on three popular biomedical image databases both in terms of % average retrieval precision (ARP) and % average retrieval recall (ARR). The experiments demonstrate an encouraging enhancement in terms of %ARP and %ARR as compared to many existing state of the art descriptors.\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.2.212-226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.2.212-226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的生物医学图像检索特征描述符——局部位平面域三维定向任意圆形扫描模式(LB-3D-OACSP)。与圆形、之字形和其他扫描结构不同,LB-3D-OACSP描述符使用多向3D任意和3D圆形扫描模式计算三维平面位平面域内参考像素与其周围像素之间的关联。与其他扫描结构相比,多向三维任意形状图案在采样位置之间提供了更连续的角度不相似性,旨在捕获更频繁的局部纹理变化。在由三幅多尺度图像各自的位平面构成的三维平面上,应用了共16个不同方向的判别性三维任意和三维圆形图案,保证了最大程度地提取跨尺度的尺度间几何信息,既能有效地捕获均匀纹理,也能有效地捕获非均匀纹理。通过高斯滤波器组对输入图像进行处理,生成三幅多尺度图像,从而生成多尺度图像。LB-3D-OACSP描述符能够通过对位平面进行编码来捕获大多数非常精细到粗糙的图像纹理。在三种常用的生物医学图像数据库上测试了LB-3D-OACSP的平均检索精度(ARP)和平均检索召回率(ARR)。实验表明,与许多现有的艺术描述符相比,在%ARP和%ARR方面有了令人鼓舞的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local Bit-Plane Domain 3D Oriented Arbitrary and Circular Shaped Scanning Patterns for Bio-Medical Image Retrieval
A new feature descriptor called local bit-plane domain 3D oriented arbitrary and circular shaped scanning pattern (LB-3D-OACSP) is proposed for biomedical image retrieval in this study. Unlike the circular, zigzag and other scanning structures, the LB-3D-OACSP descriptor calculates the association between reference-pixel and its surrounding pixels in bit-plane domain in a 3D plane using multi-directional 3D arbitrary and 3D circular shaped scanning patterns. In contrast to other scanning structures, the multi-directional 3-D arbitrary shaped patterns provide more continual angular dissimilarity among the sampling positions with the aim to capture more frequent changes in the local textures. The total of sixteen number of discriminative 3D arbitrary and 3D circular shaped patterns oriented in various directions are applied on a 3D plane constructed using respective bit-planes of three multi-scale images which ensures the maximum extraction of inter-scale geometrical information across the scales which very effectively captures not only the uniform but non-uniform textures too. The multi-scale images are generated by processing the input image with Gaussian filter banks generating three multi-scale images. The LB-3D-OACSP descriptor is able to capture most of the very fine to coarse image textures through encoding of bit-planes. The performance of LB-3D-OACSP is tested on three popular biomedical image databases both in terms of % average retrieval precision (ARP) and % average retrieval recall (ARR). The experiments demonstrate an encouraging enhancement in terms of %ARP and %ARR as compared to many existing state of the art descriptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
期刊最新文献
Roselle Pest Detection and Classification Using Threshold and Template Matching Human Action Recognition with Skeleton and Infrared Fusion Model Melanoma Detection Based on SVM Using MATLAB Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring Improving Brain Tumor Classification Efficacy through the Application of Feature Selection and Ensemble Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1