{"title":"swSpTRSV","authors":"Xinliang Wang, Weifeng Liu, W. Xue, Li Wu","doi":"10.1145/3200691.3178513","DOIUrl":null,"url":null,"abstract":"Sparse triangular solve (SpTRSV) is one of the most important kernels in many real-world applications. Currently, much research on parallel SpTRSV focuses on level-set construction for reducing the number of inter-level synchronizations. However, the out-of-control data reuse and high cost for global memory or shared cache access in inter-level synchronization have been largely neglected in existing work. In this paper, we propose a novel data layout called Sparse Level Tile to make all data reuse under control, and design a Producer-Consumer pairing method to make any inter-level synchronization only happen in very fast register communication. We implement our data layout and algorithms on an SW26010 many-core processor, which is the main building-block of the current world fastest supercomputer Sunway Taihulight. The experimental results of testing all 2057 square matrices from the Florida Matrix Collection show that our method achieves an average speedup of 6.9 and the best speedup of 38.5 over parallel level-set method. Our method also outperforms the latest methods on a KNC many-core processor in 1856 matrices and the latest methods on a K80 GPU in 1672 matrices, respectively.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"35 1","pages":"338 - 353"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3200691.3178513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Sparse triangular solve (SpTRSV) is one of the most important kernels in many real-world applications. Currently, much research on parallel SpTRSV focuses on level-set construction for reducing the number of inter-level synchronizations. However, the out-of-control data reuse and high cost for global memory or shared cache access in inter-level synchronization have been largely neglected in existing work. In this paper, we propose a novel data layout called Sparse Level Tile to make all data reuse under control, and design a Producer-Consumer pairing method to make any inter-level synchronization only happen in very fast register communication. We implement our data layout and algorithms on an SW26010 many-core processor, which is the main building-block of the current world fastest supercomputer Sunway Taihulight. The experimental results of testing all 2057 square matrices from the Florida Matrix Collection show that our method achieves an average speedup of 6.9 and the best speedup of 38.5 over parallel level-set method. Our method also outperforms the latest methods on a KNC many-core processor in 1856 matrices and the latest methods on a K80 GPU in 1672 matrices, respectively.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).