IL-17A/IL-17F双KO小鼠抵抗脂多糖诱导的内毒素休克

A. Haque, Chiaki Kajiwara, Tetsuya Matsumoto, Y. Ishii, K. Tateda
{"title":"IL-17A/IL-17F双KO小鼠抵抗脂多糖诱导的内毒素休克","authors":"A. Haque, Chiaki Kajiwara, Tetsuya Matsumoto, Y. Ishii, K. Tateda","doi":"10.21767/2248-9215.100014","DOIUrl":null,"url":null,"abstract":"Aim: IL-17 family members, IL-17A and -17F are pro-inflammatory cytokines important for host immune modulation in infection and inflammatory diseases conditions. IL-17A has been shown playing a critical role in defense against bacterial infections and IL-17AF deficient mice (DKO) reported less protective. However, the role of IL-17 in endotoxic shock is largely undefined. Materials and Methods: Wild and DKO mice were intraperitoneally lipopolysaccharide (LPS) administered and their survival status was recorded. Neutrophil, -T cells in peritoneal fluids and pro- and anti-inflammatory cytokines, chemokines in serum in endotoxic wild and DKO mice were evaluated. Results: In this study, we observed a higher mortality rate in wild than DKO, in intraperitoneal LPS induced shock. Mortality was observed in correlation with increased pro-inflammatory cytokines and chemokines. We also observed a significant rise of -T cells in peritoneal cavity by LPS in wild, which is known to be a most potent source for IL-17 release and neutrophil recruitment at the site of infection. Neutrophil recruitment was shown as a protective phenomenon in murine in bacterial infection, but the same phenomenon was not observed in LPS induced sepsis. Conclusions: These findings suggest that neutrophil recruitment at infection site may be beneficial in case of direct bacterial exposure, but not in endotoxin exposure to host tissue. This study shades a comprehensive understanding of IL-17A/F functions in acute peritonitis followed by endotoxic shock that could be beneficial for selection of infection for IL-17 directed therapy.","PeriodicalId":12012,"journal":{"name":"European Journal of Experimental Biology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"IL-17A/IL-17F Double KO Mice Are Resistant to Lipopolysaccharide Induced Endotoxic Shock\",\"authors\":\"A. Haque, Chiaki Kajiwara, Tetsuya Matsumoto, Y. Ishii, K. Tateda\",\"doi\":\"10.21767/2248-9215.100014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: IL-17 family members, IL-17A and -17F are pro-inflammatory cytokines important for host immune modulation in infection and inflammatory diseases conditions. IL-17A has been shown playing a critical role in defense against bacterial infections and IL-17AF deficient mice (DKO) reported less protective. However, the role of IL-17 in endotoxic shock is largely undefined. Materials and Methods: Wild and DKO mice were intraperitoneally lipopolysaccharide (LPS) administered and their survival status was recorded. Neutrophil, -T cells in peritoneal fluids and pro- and anti-inflammatory cytokines, chemokines in serum in endotoxic wild and DKO mice were evaluated. Results: In this study, we observed a higher mortality rate in wild than DKO, in intraperitoneal LPS induced shock. Mortality was observed in correlation with increased pro-inflammatory cytokines and chemokines. We also observed a significant rise of -T cells in peritoneal cavity by LPS in wild, which is known to be a most potent source for IL-17 release and neutrophil recruitment at the site of infection. Neutrophil recruitment was shown as a protective phenomenon in murine in bacterial infection, but the same phenomenon was not observed in LPS induced sepsis. Conclusions: These findings suggest that neutrophil recruitment at infection site may be beneficial in case of direct bacterial exposure, but not in endotoxin exposure to host tissue. This study shades a comprehensive understanding of IL-17A/F functions in acute peritonitis followed by endotoxic shock that could be beneficial for selection of infection for IL-17 directed therapy.\",\"PeriodicalId\":12012,\"journal\":{\"name\":\"European Journal of Experimental Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Experimental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21767/2248-9215.100014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Experimental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21767/2248-9215.100014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目的:IL-17家族成员IL-17A和-17F是在感染和炎症疾病条件下宿主免疫调节的重要促炎细胞因子。IL-17A已被证明在抵抗细菌感染中起关键作用,IL-17AF缺陷小鼠(DKO)的保护作用较弱。然而,IL-17在内毒素休克中的作用在很大程度上是不明确的。材料与方法:采用腹腔注射脂多糖(LPS)观察野生小鼠和DKO小鼠的生存状况。对内毒素野生小鼠和DKO小鼠腹膜液中中性粒细胞、t细胞和血清中促炎和抗炎细胞因子、趋化因子进行了评价。结果:在本研究中,我们观察到在腹腔内LPS引起的休克中,野生动物的死亡率高于DKO。死亡率与促炎细胞因子和趋化因子的增加有关。我们还观察到野生LPS在腹腔中t细胞的显著增加,这是已知的IL-17释放和中性粒细胞在感染部位募集的最有效来源。中性粒细胞募集在细菌感染小鼠中显示出保护现象,但在LPS诱导的脓毒症中未观察到同样的现象。结论:这些发现表明,感染部位的中性粒细胞募集在细菌直接暴露的情况下可能是有益的,但在内毒素暴露于宿主组织时则不然。这项研究全面了解了IL-17A/F在急性腹膜炎并发内毒性休克中的功能,这可能有助于选择IL-17定向治疗的感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IL-17A/IL-17F Double KO Mice Are Resistant to Lipopolysaccharide Induced Endotoxic Shock
Aim: IL-17 family members, IL-17A and -17F are pro-inflammatory cytokines important for host immune modulation in infection and inflammatory diseases conditions. IL-17A has been shown playing a critical role in defense against bacterial infections and IL-17AF deficient mice (DKO) reported less protective. However, the role of IL-17 in endotoxic shock is largely undefined. Materials and Methods: Wild and DKO mice were intraperitoneally lipopolysaccharide (LPS) administered and their survival status was recorded. Neutrophil, -T cells in peritoneal fluids and pro- and anti-inflammatory cytokines, chemokines in serum in endotoxic wild and DKO mice were evaluated. Results: In this study, we observed a higher mortality rate in wild than DKO, in intraperitoneal LPS induced shock. Mortality was observed in correlation with increased pro-inflammatory cytokines and chemokines. We also observed a significant rise of -T cells in peritoneal cavity by LPS in wild, which is known to be a most potent source for IL-17 release and neutrophil recruitment at the site of infection. Neutrophil recruitment was shown as a protective phenomenon in murine in bacterial infection, but the same phenomenon was not observed in LPS induced sepsis. Conclusions: These findings suggest that neutrophil recruitment at infection site may be beneficial in case of direct bacterial exposure, but not in endotoxin exposure to host tissue. This study shades a comprehensive understanding of IL-17A/F functions in acute peritonitis followed by endotoxic shock that could be beneficial for selection of infection for IL-17 directed therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Histochemical Effects of Aloe Vera Gel (Aloe Barbadensis Miller) on Puncture-Induced Intervertebral Disc Degeneration in Rabbits Tetralogy of Fallot: Origins, Management and Outcomes Profiling the Nitrogen Efficiency Using Agricultural Engineering Technique of YARA ALS Tractor Senso Pollen Variations among some Cultivated Citrus Species and its Related Genera in Egypt Bruton’s Tyrosine Kinase (Btk) Inhibitor Tirabrutinib Prevents the Development of Murine Lupus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1