{"title":"自适应感知:从感官预测中学习,用仿生指尖提取物体形状","authors":"Uriel Martinez-Hernandez, T. Prescott","doi":"10.1109/IROS.2017.8206590","DOIUrl":null,"url":null,"abstract":"In this work, we present an adaptive perception method to improve the performance in accuracy and speed of a tactile exploration task. This work extends our previous studies on sensorimotor control strategies for active tactile perception in robotics. First, we present the active Bayesian perception method to actively reposition a robot to accumulate evidence from better locations to reduce uncertainty. Second, we describe the adaptive perception method that, based on a forward model and a predicted information gain approach, allows to the robot to analyse ‘what would have happened' if a different decision ‘would have been made’ at previous decision time. This approach permits to adapt the active Bayesian perception process to improve the performance in accuracy and reaction time of an exploration task. Our methods are validated with a contour following exploratory procedure with a touch sensor. The results show that the adaptive perception method allows the robot to make sensory predictions and autonomously adapt, improving the performance of the exploration task.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"84 1","pages":"6735-6740"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip\",\"authors\":\"Uriel Martinez-Hernandez, T. Prescott\",\"doi\":\"10.1109/IROS.2017.8206590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present an adaptive perception method to improve the performance in accuracy and speed of a tactile exploration task. This work extends our previous studies on sensorimotor control strategies for active tactile perception in robotics. First, we present the active Bayesian perception method to actively reposition a robot to accumulate evidence from better locations to reduce uncertainty. Second, we describe the adaptive perception method that, based on a forward model and a predicted information gain approach, allows to the robot to analyse ‘what would have happened' if a different decision ‘would have been made’ at previous decision time. This approach permits to adapt the active Bayesian perception process to improve the performance in accuracy and reaction time of an exploration task. Our methods are validated with a contour following exploratory procedure with a touch sensor. The results show that the adaptive perception method allows the robot to make sensory predictions and autonomously adapt, improving the performance of the exploration task.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"84 1\",\"pages\":\"6735-6740\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip
In this work, we present an adaptive perception method to improve the performance in accuracy and speed of a tactile exploration task. This work extends our previous studies on sensorimotor control strategies for active tactile perception in robotics. First, we present the active Bayesian perception method to actively reposition a robot to accumulate evidence from better locations to reduce uncertainty. Second, we describe the adaptive perception method that, based on a forward model and a predicted information gain approach, allows to the robot to analyse ‘what would have happened' if a different decision ‘would have been made’ at previous decision time. This approach permits to adapt the active Bayesian perception process to improve the performance in accuracy and reaction time of an exploration task. Our methods are validated with a contour following exploratory procedure with a touch sensor. The results show that the adaptive perception method allows the robot to make sensory predictions and autonomously adapt, improving the performance of the exploration task.