加蒂隐球菌可以利用仙人掌生长、形成囊体并在体外产生黑色素

IF 2.1 Q3 MICROBIOLOGY Microbiology Research Pub Date : 2023-06-13 DOI:10.3390/microbiolres14020056
Paola Ramos-Irizarry, Bárbara Sánchez, Y. Loperena-Álvarez
{"title":"加蒂隐球菌可以利用仙人掌生长、形成囊体并在体外产生黑色素","authors":"Paola Ramos-Irizarry, Bárbara Sánchez, Y. Loperena-Álvarez","doi":"10.3390/microbiolres14020056","DOIUrl":null,"url":null,"abstract":"Cryptococcus gattii is a pathogenic yeast, member of the C. neoformans/gattii complex. Previous work from our laboratory has established the presence of C. gattii on cacti lesions, providing proof that it can grow in a stressful environment. However, it is not known which part of the cactus the yeast uses for nutrients. The purpose of this research is to determine the ability of C. gattii to grow in different parts of the cactus to assess how the yeast adapts to grow in this unique environment. Cactus media were developed using the outer, inner, and whole cactus from Pilosocereus spp. Cryptcoccus gattii was grown on the different cactus media, along with potato dextrose agar as a control for 24 and 48 h at 30 °C. Compared to the control medium, yeast growth was reduced in all cactus media, while an increase in the capsule development of the yeast grown in the inner part and the whole-cactus media was observed. Interestingly, the yeast produces melanin when grown in the outer membrane medium, which was dependent on laccase, suggesting that the outer membrane may contain a precursor that stimulatates pigment production. To our knowledge, this is the first study addressing these key differences in the growth of C. gattii on different parts of the cactus.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryptococcus gattii Can Use the Cactus Pilosocereus spp. to Grow and Develop a Capsule and Produce Melanin In Vitro\",\"authors\":\"Paola Ramos-Irizarry, Bárbara Sánchez, Y. Loperena-Álvarez\",\"doi\":\"10.3390/microbiolres14020056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryptococcus gattii is a pathogenic yeast, member of the C. neoformans/gattii complex. Previous work from our laboratory has established the presence of C. gattii on cacti lesions, providing proof that it can grow in a stressful environment. However, it is not known which part of the cactus the yeast uses for nutrients. The purpose of this research is to determine the ability of C. gattii to grow in different parts of the cactus to assess how the yeast adapts to grow in this unique environment. Cactus media were developed using the outer, inner, and whole cactus from Pilosocereus spp. Cryptcoccus gattii was grown on the different cactus media, along with potato dextrose agar as a control for 24 and 48 h at 30 °C. Compared to the control medium, yeast growth was reduced in all cactus media, while an increase in the capsule development of the yeast grown in the inner part and the whole-cactus media was observed. Interestingly, the yeast produces melanin when grown in the outer membrane medium, which was dependent on laccase, suggesting that the outer membrane may contain a precursor that stimulatates pigment production. To our knowledge, this is the first study addressing these key differences in the growth of C. gattii on different parts of the cactus.\",\"PeriodicalId\":43788,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres14020056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14020056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

加蒂隐球菌是一种致病性酵母菌,是新生隐球菌/加蒂隐球菌复合体的成员。我们实验室以前的工作已经在仙人掌的损伤上建立了C. gatti的存在,提供了它可以在有压力的环境中生长的证据。然而,目前尚不清楚酵母利用仙人掌的哪一部分作为营养物质。本研究的目的是确定C. gatti在仙人掌不同部位生长的能力,以评估酵母如何适应在这种独特的环境中生长。仙人掌培养基采用毛囊仙人掌属(Pilosocereus spp.)的外部、内部和整个仙人掌进行培养。加蒂隐球菌(Cryptcoccus gatii)在不同的仙人掌培养基上生长,马铃薯葡萄糖琼脂作为对照,在30°C下培养24和48小时。与对照培养基相比,所有仙人掌培养基中的酵母菌生长都有所减少,而在仙人掌内部和整个仙人掌培养基中生长的酵母菌的蒴果发育都有所增加。有趣的是,酵母在依赖漆酶的外膜培养基中生长时产生黑色素,这表明外膜可能含有刺激色素产生的前体。据我们所知,这是第一个针对仙人掌不同部位生长的这些关键差异的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cryptococcus gattii Can Use the Cactus Pilosocereus spp. to Grow and Develop a Capsule and Produce Melanin In Vitro
Cryptococcus gattii is a pathogenic yeast, member of the C. neoformans/gattii complex. Previous work from our laboratory has established the presence of C. gattii on cacti lesions, providing proof that it can grow in a stressful environment. However, it is not known which part of the cactus the yeast uses for nutrients. The purpose of this research is to determine the ability of C. gattii to grow in different parts of the cactus to assess how the yeast adapts to grow in this unique environment. Cactus media were developed using the outer, inner, and whole cactus from Pilosocereus spp. Cryptcoccus gattii was grown on the different cactus media, along with potato dextrose agar as a control for 24 and 48 h at 30 °C. Compared to the control medium, yeast growth was reduced in all cactus media, while an increase in the capsule development of the yeast grown in the inner part and the whole-cactus media was observed. Interestingly, the yeast produces melanin when grown in the outer membrane medium, which was dependent on laccase, suggesting that the outer membrane may contain a precursor that stimulatates pigment production. To our knowledge, this is the first study addressing these key differences in the growth of C. gattii on different parts of the cactus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology Research
Microbiology Research MICROBIOLOGY-
CiteScore
1.90
自引率
6.70%
发文量
62
审稿时长
10 weeks
期刊介绍: Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.
期刊最新文献
Updates on Staphylococcal Vaccines Assess the Diagnostic Accuracy of GeneXpert to Detect Mycobacterium tuberculosis and Rifampicin-Resistant Tuberculosis among Presumptive Tuberculosis and Presumptive Drug Resistant Tuberculosis Patients Genome Sequence and Characterisation of Peribacillus sp. Strain AS_2, a Bacterial Endophyte Isolated from Alectra sessiliflora Biodegradation of Free Cyanide by a New Isolated Alkaliphilic Bacillus licheniformis Strain Bioactive Diepoxy Metabolites and Highly Oxygenated Triterpenoids from Marine and Plant-Derived Bacteria and Fungi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1