带物体变形的鱼骨模型

H. Wakamatsu, E. Arai, S. Hirai
{"title":"带物体变形的鱼骨模型","authors":"H. Wakamatsu, E. Arai, S. Hirai","doi":"10.15607/RSS.2007.III.012","DOIUrl":null,"url":null,"abstract":"A modeling method for representing belt object deformation is proposed. Deformation of belt objects such as film circuit boards or flexible circuit boards must be estimated for automatic manipulation and assembly. In this paper, we assume that deformation of an inextensible belt object can be described by the shape of its central axis in a longitudinal direction called “the spine line” and lines with zero curvature called “rib lines”. This model is referred to as a “fishbone model” in this paper. First, we describe deformation of a rectangular belt object using differential geometry. Next, we propose the fishbone model considering characteristics of a developable surface, i.e., a surface without expansion or contraction. Then, we formulate potential energy of the object and constraints imposed on it. Finally, we explain a procedure to compute the deformed shape of the object and verify the validity of our proposed method by comparing some computational results with experimental results.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"45 1","pages":"89-96"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fishbone Model for Belt Object Deformation\",\"authors\":\"H. Wakamatsu, E. Arai, S. Hirai\",\"doi\":\"10.15607/RSS.2007.III.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modeling method for representing belt object deformation is proposed. Deformation of belt objects such as film circuit boards or flexible circuit boards must be estimated for automatic manipulation and assembly. In this paper, we assume that deformation of an inextensible belt object can be described by the shape of its central axis in a longitudinal direction called “the spine line” and lines with zero curvature called “rib lines”. This model is referred to as a “fishbone model” in this paper. First, we describe deformation of a rectangular belt object using differential geometry. Next, we propose the fishbone model considering characteristics of a developable surface, i.e., a surface without expansion or contraction. Then, we formulate potential energy of the object and constraints imposed on it. Finally, we explain a procedure to compute the deformed shape of the object and verify the validity of our proposed method by comparing some computational results with experimental results.\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\"45 1\",\"pages\":\"89-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2007.III.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2007.III.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种表示带体变形的建模方法。带状物体,如薄膜电路板或柔性电路板的变形必须估计自动操作和组装。在本文中,我们假设一个不可扩展的带状物体的变形可以用其中轴线在纵向上的形状来描述,称为“脊柱线”,曲率为零的线条称为“肋骨线”。本文将此模型称为“鱼骨模型”。首先,我们用微分几何描述矩形带物体的变形。接下来,我们提出了考虑可展表面特征的鱼骨模型,即无膨胀或收缩的表面。然后,我们给出了物体的势能和施加在物体上的约束。最后,给出了一种计算物体变形形状的方法,并将一些计算结果与实验结果进行了比较,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fishbone Model for Belt Object Deformation
A modeling method for representing belt object deformation is proposed. Deformation of belt objects such as film circuit boards or flexible circuit boards must be estimated for automatic manipulation and assembly. In this paper, we assume that deformation of an inextensible belt object can be described by the shape of its central axis in a longitudinal direction called “the spine line” and lines with zero curvature called “rib lines”. This model is referred to as a “fishbone model” in this paper. First, we describe deformation of a rectangular belt object using differential geometry. Next, we propose the fishbone model considering characteristics of a developable surface, i.e., a surface without expansion or contraction. Then, we formulate potential energy of the object and constraints imposed on it. Finally, we explain a procedure to compute the deformed shape of the object and verify the validity of our proposed method by comparing some computational results with experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1