基于p型半导体聚合物填料构建物理交联和电子空穴对改进高温电容储能

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2023-11-12 DOI:10.1002/adfm.202312238
Chuanfang Yan, Yuting Wan, Hongping Long, Huang Luo, Xuan Liu, Hang Luo, Sheng Chen
{"title":"基于p型半导体聚合物填料构建物理交联和电子空穴对改进高温电容储能","authors":"Chuanfang Yan,&nbsp;Yuting Wan,&nbsp;Hongping Long,&nbsp;Huang Luo,&nbsp;Xuan Liu,&nbsp;Hang Luo,&nbsp;Sheng Chen","doi":"10.1002/adfm.202312238","DOIUrl":null,"url":null,"abstract":"<p>In this work, p-type polymer semiconductor poly(2-((3,6,7,10,11-pentakis (hexyloxy) triphenylene-2-yl)oxy)ethyl methacrylate) (PMHT) is added into polyetherimide (PEI). Benefiting from the electrostatic interaction between strong electrophilic charged phenyls of the PEI matrix and strong electronegative benzophenanthrene unit of the PMHT filler, the physical cross-linked networks are formed in polymer blends. Meanwhile, the lowest unoccupied molecular orbital level of PEI is close to the highest occupied molecular orbital level of PMHT, which is easy to establish electron–hole pair by Coulomb force. Thus, the carrier trap is constructed in the heterojunction region between PMHT filler and PEI matrix. Both physically cross-linked networks and electron–hole pairs can promote breakdown strength (<i>E</i><sub>b</sub>) of PEI and decrease energy loss. Importantly, PMHT filler can improve the dielectric constant of PEI. As a result, 0.75 wt% PMHT/PEI delivers an ultrahigh discharge energy density (<i>U</i><sub>d</sub>) of 10.7 J cm<sup>−3</sup> at an <i>E</i><sub>b</sub> of 680 MV m<sup>−1</sup> and at room temperature, and maintains a charge and discharge efficiency of above 90%. In addition, a superior <i>U</i><sub>d</sub> of 5.1 and 3.3 J cm<sup>−3</sup> is achieved at 150 and 200 °C, respectively. This paper creates a new perspective for preparing high-properties polymer dielectrics by combining the advantages of cross-linking and electron–hole pairs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Capacitive Energy Storage at High Temperature via Constructing Physical Cross-Link and Electron–Hole Pairs Based on P-Type Semiconductive Polymer Filler\",\"authors\":\"Chuanfang Yan,&nbsp;Yuting Wan,&nbsp;Hongping Long,&nbsp;Huang Luo,&nbsp;Xuan Liu,&nbsp;Hang Luo,&nbsp;Sheng Chen\",\"doi\":\"10.1002/adfm.202312238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, p-type polymer semiconductor poly(2-((3,6,7,10,11-pentakis (hexyloxy) triphenylene-2-yl)oxy)ethyl methacrylate) (PMHT) is added into polyetherimide (PEI). Benefiting from the electrostatic interaction between strong electrophilic charged phenyls of the PEI matrix and strong electronegative benzophenanthrene unit of the PMHT filler, the physical cross-linked networks are formed in polymer blends. Meanwhile, the lowest unoccupied molecular orbital level of PEI is close to the highest occupied molecular orbital level of PMHT, which is easy to establish electron–hole pair by Coulomb force. Thus, the carrier trap is constructed in the heterojunction region between PMHT filler and PEI matrix. Both physically cross-linked networks and electron–hole pairs can promote breakdown strength (<i>E</i><sub>b</sub>) of PEI and decrease energy loss. Importantly, PMHT filler can improve the dielectric constant of PEI. As a result, 0.75 wt% PMHT/PEI delivers an ultrahigh discharge energy density (<i>U</i><sub>d</sub>) of 10.7 J cm<sup>−3</sup> at an <i>E</i><sub>b</sub> of 680 MV m<sup>−1</sup> and at room temperature, and maintains a charge and discharge efficiency of above 90%. In addition, a superior <i>U</i><sub>d</sub> of 5.1 and 3.3 J cm<sup>−3</sup> is achieved at 150 and 200 °C, respectively. This paper creates a new perspective for preparing high-properties polymer dielectrics by combining the advantages of cross-linking and electron–hole pairs.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202312238\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202312238","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究将p型聚合物半导体聚(2-((3,6,7,10,11-五(己氧基)三苯基-2-基)氧)甲基丙烯酸乙酯)(PMHT)添加到聚醚酰亚胺(PEI)中。利用PEI基体的强亲电性带电苯基与PMHT填料的强电负性苯并菲单元之间的静电相互作用,在聚合物共混物中形成了物理交联网络。同时,PEI的最低未占据分子轨道能级接近PMHT的最高已占据分子轨道能级,易于通过库仑力建立电子-空穴对。因此,在PMHT填料和PEI矩阵之间的异质结区域构建了载流子陷阱。物理交联网络和电子空穴对都能提高PEI的击穿强度(Eb),降低能量损失。重要的是,PMHT填料可以提高PEI的介电常数。结果表明,0.75 wt%的PMHT/PEI在室温下,在680 MV m−1的放电能量密度(Ud)可达10.7 J cm−3,并保持90%以上的充放电效率。此外,在150°C和200°C下,Ud分别达到5.1和3.3 J cm−3。结合交联和电子-空穴对的优点,为制备高性能聚合物电介质开辟了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Capacitive Energy Storage at High Temperature via Constructing Physical Cross-Link and Electron–Hole Pairs Based on P-Type Semiconductive Polymer Filler

In this work, p-type polymer semiconductor poly(2-((3,6,7,10,11-pentakis (hexyloxy) triphenylene-2-yl)oxy)ethyl methacrylate) (PMHT) is added into polyetherimide (PEI). Benefiting from the electrostatic interaction between strong electrophilic charged phenyls of the PEI matrix and strong electronegative benzophenanthrene unit of the PMHT filler, the physical cross-linked networks are formed in polymer blends. Meanwhile, the lowest unoccupied molecular orbital level of PEI is close to the highest occupied molecular orbital level of PMHT, which is easy to establish electron–hole pair by Coulomb force. Thus, the carrier trap is constructed in the heterojunction region between PMHT filler and PEI matrix. Both physically cross-linked networks and electron–hole pairs can promote breakdown strength (Eb) of PEI and decrease energy loss. Importantly, PMHT filler can improve the dielectric constant of PEI. As a result, 0.75 wt% PMHT/PEI delivers an ultrahigh discharge energy density (Ud) of 10.7 J cm−3 at an Eb of 680 MV m−1 and at room temperature, and maintains a charge and discharge efficiency of above 90%. In addition, a superior Ud of 5.1 and 3.3 J cm−3 is achieved at 150 and 200 °C, respectively. This paper creates a new perspective for preparing high-properties polymer dielectrics by combining the advantages of cross-linking and electron–hole pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Tailoring the Tunneling-Effect-Boosted Interfacial Charge Trapping via Effective Conjugation Length Compromising Configurational Entropy Leading to Exceptional Thermoelectric Properties in SnTe-Based Materials Selective Twin NIR-IIb Ratiometric Luminescence Nanoprobes Enable the Accurate Visualization of MPO-Mediated Oxidative Stress in Acute Liver Injury Ultra-High Secure Holographically Steganographic Array with Spatiotemporal Dual-Encryption Keys Recent Advances in Enzyme-based Biofuel Cells Using Glucose Fuel: Achieving High Power Output and Enhanced Operational Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1