{"title":"17-4PH不锈钢薄壁熔模铸件充型试验研究","authors":"M. Raza, R. Svenningsson, M. Irwin","doi":"10.7494/MAFE.2015.41.2.85","DOIUrl":null,"url":null,"abstract":"The global requirements on lower fuel consumption and emissions are increasing the demand for lowering the weight of cast components. Reducing the wall thickness of cast components is one way of achieving this. The aim of this work was to investigate castability of 17-4PH stainless steel in thin-walled test geometries (less than 2mm). The casting trials were performed to investigate the fluidity as a function of casting temperature, mold preheat temperature and filling systems in thin-walled sections. It was observed that fluidityin a top-gated configuration is strongly affected by casting temperature, however, effect of mold pre heat temperature on fluidity was not significant. On the other hand, castings made in bottom-gated configuration were more stable and fluidity was not significantly affected by variation in casting temperature and mold preheat temperature. Less porosityand flow-related defects were observed in the bottom-gated system as compared to top-gated system.","PeriodicalId":18751,"journal":{"name":"Metallurgy and Foundry Engineering","volume":"21 43","pages":"85-85"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental study of the filling of thin-walled investment Castings in 17-4PH stainless steel\",\"authors\":\"M. Raza, R. Svenningsson, M. Irwin\",\"doi\":\"10.7494/MAFE.2015.41.2.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global requirements on lower fuel consumption and emissions are increasing the demand for lowering the weight of cast components. Reducing the wall thickness of cast components is one way of achieving this. The aim of this work was to investigate castability of 17-4PH stainless steel in thin-walled test geometries (less than 2mm). The casting trials were performed to investigate the fluidity as a function of casting temperature, mold preheat temperature and filling systems in thin-walled sections. It was observed that fluidityin a top-gated configuration is strongly affected by casting temperature, however, effect of mold pre heat temperature on fluidity was not significant. On the other hand, castings made in bottom-gated configuration were more stable and fluidity was not significantly affected by variation in casting temperature and mold preheat temperature. Less porosityand flow-related defects were observed in the bottom-gated system as compared to top-gated system.\",\"PeriodicalId\":18751,\"journal\":{\"name\":\"Metallurgy and Foundry Engineering\",\"volume\":\"21 43\",\"pages\":\"85-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgy and Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MAFE.2015.41.2.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgy and Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MAFE.2015.41.2.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental study of the filling of thin-walled investment Castings in 17-4PH stainless steel
The global requirements on lower fuel consumption and emissions are increasing the demand for lowering the weight of cast components. Reducing the wall thickness of cast components is one way of achieving this. The aim of this work was to investigate castability of 17-4PH stainless steel in thin-walled test geometries (less than 2mm). The casting trials were performed to investigate the fluidity as a function of casting temperature, mold preheat temperature and filling systems in thin-walled sections. It was observed that fluidityin a top-gated configuration is strongly affected by casting temperature, however, effect of mold pre heat temperature on fluidity was not significant. On the other hand, castings made in bottom-gated configuration were more stable and fluidity was not significantly affected by variation in casting temperature and mold preheat temperature. Less porosityand flow-related defects were observed in the bottom-gated system as compared to top-gated system.