Daniel Green, R. Stirling, Simon De Ville, V. Stovin, Richard Dawson
{"title":"研究生物保留细胞的性能:一项大规模的渗滤仪研究","authors":"Daniel Green, R. Stirling, Simon De Ville, V. Stovin, Richard Dawson","doi":"10.5194/EGUSPHERE-EGU21-10259","DOIUrl":null,"url":null,"abstract":"Sustainable Drainage Systems (SuDS) are a widely adopted approach for managing excess urban runoff by intercepting, retaining and attenuating the flow of water through the built environment, playing a key role in reducing urban flood risk. Vegetated bioretention cells (‘rain gardens’) are one of the most simple, practical and commonly implemented SuDS options and can be easily retrofitted into urban spaces to deal with surface water from paved areas. Although current UK and international guidance provides design guidance for SuDS, no quantitative indications on their hydrological performance are currently available. This study aims to provide evidence to assess the effectiveness of such systems to support optimal implementation of vegetated bioretention cells for stormwater management.","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"342 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating bioretention cell performance: A large-scale lysimeter study \",\"authors\":\"Daniel Green, R. Stirling, Simon De Ville, V. Stovin, Richard Dawson\",\"doi\":\"10.5194/EGUSPHERE-EGU21-10259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable Drainage Systems (SuDS) are a widely adopted approach for managing excess urban runoff by intercepting, retaining and attenuating the flow of water through the built environment, playing a key role in reducing urban flood risk. Vegetated bioretention cells (‘rain gardens’) are one of the most simple, practical and commonly implemented SuDS options and can be easily retrofitted into urban spaces to deal with surface water from paved areas. Although current UK and international guidance provides design guidance for SuDS, no quantitative indications on their hydrological performance are currently available. This study aims to provide evidence to assess the effectiveness of such systems to support optimal implementation of vegetated bioretention cells for stormwater management.\",\"PeriodicalId\":22413,\"journal\":{\"name\":\"The EGU General Assembly\",\"volume\":\"342 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EGU General Assembly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/EGUSPHERE-EGU21-10259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/EGUSPHERE-EGU21-10259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating bioretention cell performance: A large-scale lysimeter study
Sustainable Drainage Systems (SuDS) are a widely adopted approach for managing excess urban runoff by intercepting, retaining and attenuating the flow of water through the built environment, playing a key role in reducing urban flood risk. Vegetated bioretention cells (‘rain gardens’) are one of the most simple, practical and commonly implemented SuDS options and can be easily retrofitted into urban spaces to deal with surface water from paved areas. Although current UK and international guidance provides design guidance for SuDS, no quantitative indications on their hydrological performance are currently available. This study aims to provide evidence to assess the effectiveness of such systems to support optimal implementation of vegetated bioretention cells for stormwater management.