{"title":"深海珊瑚 Lophelia pertusa 的基因组组装。","authors":"Santiago Herrera, Erik E Cordes","doi":"10.46471/gigabyte.78","DOIUrl":null,"url":null,"abstract":"<p><p>Like their shallow-water counterparts, cold-water corals create reefs that support highly diverse communities, and these structures are subject to numerous anthropogenic threats. Here, we present the genome assembly of <i>Lophelia pertusa</i> from the southeastern coast of the USA, the first one for a deep-sea scleractinian coral species. We generated PacBio continuous long reads data for an initial assembly and proximity ligation data for scaffolding. The assembly was annotated using evidence from transcripts, proteins, and <i>ab initio</i> gene model predictions. This assembly is comparable to high-quality reference genomes from shallow-water scleractinian corals. The assembly comprises 2,858 scaffolds (N50 1.6 Mbp) and has a size of 556.9 Mbp. Approximately 57% of the genome comprises repetitive elements and 34% of coding DNA. We predicted 41,089 genes, including 91.1% of complete metazoan orthologs. This assembly will facilitate investigations into the ecology of this species and the evolution of deep-sea corals.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2023 ","pages":"gigabyte78"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022433/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome assembly of the deep-sea coral <i>Lophelia pertusa</i>.\",\"authors\":\"Santiago Herrera, Erik E Cordes\",\"doi\":\"10.46471/gigabyte.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Like their shallow-water counterparts, cold-water corals create reefs that support highly diverse communities, and these structures are subject to numerous anthropogenic threats. Here, we present the genome assembly of <i>Lophelia pertusa</i> from the southeastern coast of the USA, the first one for a deep-sea scleractinian coral species. We generated PacBio continuous long reads data for an initial assembly and proximity ligation data for scaffolding. The assembly was annotated using evidence from transcripts, proteins, and <i>ab initio</i> gene model predictions. This assembly is comparable to high-quality reference genomes from shallow-water scleractinian corals. The assembly comprises 2,858 scaffolds (N50 1.6 Mbp) and has a size of 556.9 Mbp. Approximately 57% of the genome comprises repetitive elements and 34% of coding DNA. We predicted 41,089 genes, including 91.1% of complete metazoan orthologs. This assembly will facilitate investigations into the ecology of this species and the evolution of deep-sea corals.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2023 \",\"pages\":\"gigabyte78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022433/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
与浅水珊瑚一样,冷水珊瑚形成的珊瑚礁支持着高度多样化的群落,而这些结构却受到许多人为因素的威胁。在这里,我们展示了来自美国东南海岸的 Lophelia pertusa 的基因组组装结果,这是首个深海硬骨珊瑚物种的基因组组装结果。我们生成了用于初步组装的 PacBio 连续长读数数据和用于搭建脚手架的近距离连接数据。我们利用来自转录本、蛋白质和 ab initio 基因模型预测的证据对组装结果进行了注释。该组装结果可与浅水硬骨珊瑚的高质量参考基因组相媲美。该基因组包括 2,858 个支架(N50 1.6 Mbp),大小为 556.9 Mbp。约 57% 的基因组由重复元件组成,34% 的基因组由编码 DNA 组成。我们预测了 41,089 个基因,其中包括 91.1% 的完整元古动物直向同源物。该基因组的组装将有助于研究该物种的生态学和深海珊瑚的进化。
Genome assembly of the deep-sea coral Lophelia pertusa.
Like their shallow-water counterparts, cold-water corals create reefs that support highly diverse communities, and these structures are subject to numerous anthropogenic threats. Here, we present the genome assembly of Lophelia pertusa from the southeastern coast of the USA, the first one for a deep-sea scleractinian coral species. We generated PacBio continuous long reads data for an initial assembly and proximity ligation data for scaffolding. The assembly was annotated using evidence from transcripts, proteins, and ab initio gene model predictions. This assembly is comparable to high-quality reference genomes from shallow-water scleractinian corals. The assembly comprises 2,858 scaffolds (N50 1.6 Mbp) and has a size of 556.9 Mbp. Approximately 57% of the genome comprises repetitive elements and 34% of coding DNA. We predicted 41,089 genes, including 91.1% of complete metazoan orthologs. This assembly will facilitate investigations into the ecology of this species and the evolution of deep-sea corals.