混合动力汽车内置式永磁同步电机初始拓扑设计

M. Cosovic, S. Smaka
{"title":"混合动力汽车内置式永磁同步电机初始拓扑设计","authors":"M. Cosovic, S. Smaka","doi":"10.1109/IEMDC.2015.7409286","DOIUrl":null,"url":null,"abstract":"The design method of initial topology of interior permanent magnet synchronous machine (IPMSM) for hybrid electric vehicle (HEV) propulsion is described in this paper. Design constraints are selected on the basis of limitations imposed by machine's manufacturer and application (e.g. maximum copper slot fill factor, air gap length, permanent magnet material, limited space available in drive trains, etc.). Design variables are rotor radius, stator slot width and number of turns per phase winding. Parametric analysis is performed for various machine topologies. The cost function, which connects the distribution of operating points of HEV and the efficiency maps of various topologies of an electrical machine, is defined. Obtained parametric results are compared to find the result leading to the extreme value of the cost function. The initial design of IPMSM that corresponds to this result is considered as the best initial design.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"60 4","pages":"1658-1664"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of initial topology of interior permanent magnet synchronous machine for hybrid electric vehicle\",\"authors\":\"M. Cosovic, S. Smaka\",\"doi\":\"10.1109/IEMDC.2015.7409286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design method of initial topology of interior permanent magnet synchronous machine (IPMSM) for hybrid electric vehicle (HEV) propulsion is described in this paper. Design constraints are selected on the basis of limitations imposed by machine's manufacturer and application (e.g. maximum copper slot fill factor, air gap length, permanent magnet material, limited space available in drive trains, etc.). Design variables are rotor radius, stator slot width and number of turns per phase winding. Parametric analysis is performed for various machine topologies. The cost function, which connects the distribution of operating points of HEV and the efficiency maps of various topologies of an electrical machine, is defined. Obtained parametric results are compared to find the result leading to the extreme value of the cost function. The initial design of IPMSM that corresponds to this result is considered as the best initial design.\",\"PeriodicalId\":6477,\"journal\":{\"name\":\"2015 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"volume\":\"60 4\",\"pages\":\"1658-1664\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2015.7409286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了用于混合动力汽车(HEV)推进的内置式永磁同步电机(IPMSM)初始拓扑的设计方法。设计约束是根据机器制造商和应用施加的限制来选择的(例如,最大铜槽填充系数,气隙长度,永磁材料,传动系统中可用的有限空间等)。设计变量为转子半径、定子槽宽度和每相绕组匝数。对各种机器拓扑进行参数分析。定义了连接混合动力汽车工作点分布与电机各种拓扑效率图的成本函数。对得到的参数结果进行比较,找出导致代价函数极值的结果。与此结果相对应的IPMSM初始设计被认为是最佳初始设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of initial topology of interior permanent magnet synchronous machine for hybrid electric vehicle
The design method of initial topology of interior permanent magnet synchronous machine (IPMSM) for hybrid electric vehicle (HEV) propulsion is described in this paper. Design constraints are selected on the basis of limitations imposed by machine's manufacturer and application (e.g. maximum copper slot fill factor, air gap length, permanent magnet material, limited space available in drive trains, etc.). Design variables are rotor radius, stator slot width and number of turns per phase winding. Parametric analysis is performed for various machine topologies. The cost function, which connects the distribution of operating points of HEV and the efficiency maps of various topologies of an electrical machine, is defined. Obtained parametric results are compared to find the result leading to the extreme value of the cost function. The initial design of IPMSM that corresponds to this result is considered as the best initial design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Free vibration analysis of a large hydroelectric generator and computation of radial electromagnetic exciting forces Multi-objective optimization of an actively shielded superconducting field winding: Pole count study Brushless doubly-fed induction machines: Torque ripple A dynamic pole-phase modulation induction machine model Tri-port converter for flexible energy control of PV-fed electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1