金属基纳米颗粒对柴油机排放及振动分析的促进作用

A. Yaşar, A. Keski̇n, Erdi Tosun, Safak Yildizhan
{"title":"金属基纳米颗粒对柴油机排放及振动分析的促进作用","authors":"A. Yaşar, A. Keski̇n, Erdi Tosun, Safak Yildizhan","doi":"10.18245/IJAET.730092","DOIUrl":null,"url":null,"abstract":"In current study, exhaust emission, vibration and noise features of diesel engine with addition of metallic based nanoparticles into diesel fuels were investigated experimentally. Various nanoparticles called as silver (II) nitrate (AgNO3), manganese (II) nitrate hydrate (Mn(NO3)2. xH20) and nickel(II) nitrate hexahydrate (Ni(NO3)2.6H2O) were used as an additive to diesel fuel at 25 ppm and 50 ppm dosing level so as to obtain six different fuel samples. Diesel engine with air-cooled and a single cylinder were utilized for engine tests altering engine speed from 1200 to 2800 rpm at the intervals of 400 rpm. The results demonstrated that of the nanoparticle addition did not remarkably affect the physicochemical features of the diesel test blends. But, the addition of nanoparticles slightly raised viscosity, cetane number and the heating value of test fuels especially, at the higher nanoparticle concentrations. In all experiments, with nanoparticle added blend fuels, CO, HC, NOx emission values and brake specific fuel consumption (BSFC) declined in parallel with the increase in nanoparticle concentration. In addition, it was shown that the Sound Pressure Level (SPL) and vibration characteristics of the engine block also decreased with increasing nanoparticle concentration of test fuels. As a result, AgNO3 addition to diesel fuel has an effective role in both reducing emission and vibration values and reducing BSFC values.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"44 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promotional effect of metal based nanoparticles on emission and vibration analysis of diesel engine\",\"authors\":\"A. Yaşar, A. Keski̇n, Erdi Tosun, Safak Yildizhan\",\"doi\":\"10.18245/IJAET.730092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In current study, exhaust emission, vibration and noise features of diesel engine with addition of metallic based nanoparticles into diesel fuels were investigated experimentally. Various nanoparticles called as silver (II) nitrate (AgNO3), manganese (II) nitrate hydrate (Mn(NO3)2. xH20) and nickel(II) nitrate hexahydrate (Ni(NO3)2.6H2O) were used as an additive to diesel fuel at 25 ppm and 50 ppm dosing level so as to obtain six different fuel samples. Diesel engine with air-cooled and a single cylinder were utilized for engine tests altering engine speed from 1200 to 2800 rpm at the intervals of 400 rpm. The results demonstrated that of the nanoparticle addition did not remarkably affect the physicochemical features of the diesel test blends. But, the addition of nanoparticles slightly raised viscosity, cetane number and the heating value of test fuels especially, at the higher nanoparticle concentrations. In all experiments, with nanoparticle added blend fuels, CO, HC, NOx emission values and brake specific fuel consumption (BSFC) declined in parallel with the increase in nanoparticle concentration. In addition, it was shown that the Sound Pressure Level (SPL) and vibration characteristics of the engine block also decreased with increasing nanoparticle concentration of test fuels. As a result, AgNO3 addition to diesel fuel has an effective role in both reducing emission and vibration values and reducing BSFC values.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"44 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18245/IJAET.730092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18245/IJAET.730092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,研究了在柴油中添加金属基纳米颗粒后,柴油机的尾气排放、振动和噪声特性。各种纳米颗粒称为硝酸银(II) (AgNO3)、硝酸锰(II)水合物(Mn(NO3)2)。将xH20)和六水合硝酸镍(Ni(NO3)2.6H2O)分别添加到25 ppm和50 ppm的柴油中,得到6种不同的燃料样品。采用风冷式单缸柴油机进行发动机试验,发动机转速每隔400转,从1200转到2800转。结果表明,纳米颗粒的加入对柴油试验共混物的理化特性没有显著影响。但是,纳米颗粒的加入略微提高了测试燃料的粘度、十六烷值和热值,特别是在纳米颗粒浓度较高的情况下。在所有实验中,添加纳米颗粒的混合燃料中,CO、HC、NOx排放值和制动比油耗(BSFC)随纳米颗粒浓度的增加而平行下降。此外,随着试验燃料纳米颗粒浓度的增加,发动机机体的声压级(SPL)和振动特性也有所降低。由此可见,在柴油中添加AgNO3对降低排放和振动值以及降低BSFC值都有有效的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Promotional effect of metal based nanoparticles on emission and vibration analysis of diesel engine
In current study, exhaust emission, vibration and noise features of diesel engine with addition of metallic based nanoparticles into diesel fuels were investigated experimentally. Various nanoparticles called as silver (II) nitrate (AgNO3), manganese (II) nitrate hydrate (Mn(NO3)2. xH20) and nickel(II) nitrate hexahydrate (Ni(NO3)2.6H2O) were used as an additive to diesel fuel at 25 ppm and 50 ppm dosing level so as to obtain six different fuel samples. Diesel engine with air-cooled and a single cylinder were utilized for engine tests altering engine speed from 1200 to 2800 rpm at the intervals of 400 rpm. The results demonstrated that of the nanoparticle addition did not remarkably affect the physicochemical features of the diesel test blends. But, the addition of nanoparticles slightly raised viscosity, cetane number and the heating value of test fuels especially, at the higher nanoparticle concentrations. In all experiments, with nanoparticle added blend fuels, CO, HC, NOx emission values and brake specific fuel consumption (BSFC) declined in parallel with the increase in nanoparticle concentration. In addition, it was shown that the Sound Pressure Level (SPL) and vibration characteristics of the engine block also decreased with increasing nanoparticle concentration of test fuels. As a result, AgNO3 addition to diesel fuel has an effective role in both reducing emission and vibration values and reducing BSFC values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodiesel production from waste frying oil by electrochemical method using stainless steel electrode Numerical investigation of the thermal and acoustic effect of material variations on the exhaust muffler Experimental evaluation of gasoline-hexane fuel blends usage in a spark ignition engine Suspension system design for pedal-assisted cargo E-quadricycle Reducing fuel consumption of a light-duty vehicle by incorporating CuO nanoparticles in compressor lubricant of air-conditioning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1