基于参数空间划分的高维变异性分析

Y. Tao, F. Ferranti, M. Nakhla
{"title":"基于参数空间划分的高维变异性分析","authors":"Y. Tao, F. Ferranti, M. Nakhla","doi":"10.1109/IMS30576.2020.9224060","DOIUrl":null,"url":null,"abstract":"A stochastic collocation-based method is proposed for variability analysis in the presence of relatively large number of stochastic parameters. The method is based on the node tearing concept where the original space of stochastic parameters is decomposed into a combination of lower dimension subspaces. Pertinent numerical results are presented to validate the efficiency and accuracy of the proposed technique.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"38 ","pages":"61-63"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Dimensional Variability Analysis via Parameters Space Partitioning\",\"authors\":\"Y. Tao, F. Ferranti, M. Nakhla\",\"doi\":\"10.1109/IMS30576.2020.9224060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stochastic collocation-based method is proposed for variability analysis in the presence of relatively large number of stochastic parameters. The method is based on the node tearing concept where the original space of stochastic parameters is decomposed into a combination of lower dimension subspaces. Pertinent numerical results are presented to validate the efficiency and accuracy of the proposed technique.\",\"PeriodicalId\":6784,\"journal\":{\"name\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"volume\":\"38 \",\"pages\":\"61-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMS30576.2020.9224060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS30576.2020.9224060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于随机配位的方法,用于随机参数较多的变异性分析。该方法基于节点撕裂概念,将随机参数的原始空间分解为低维子空间的组合。相关的数值结果验证了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Dimensional Variability Analysis via Parameters Space Partitioning
A stochastic collocation-based method is proposed for variability analysis in the presence of relatively large number of stochastic parameters. The method is based on the node tearing concept where the original space of stochastic parameters is decomposed into a combination of lower dimension subspaces. Pertinent numerical results are presented to validate the efficiency and accuracy of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UIR-Loaded Dual-Mode SIW Filter with Compact Size and Controllable Transmission Zeros A 68-dB Isolation 1.0-dB Loss Compact CMOS SPDT RF Switch Utilizing Switched Resonance Network A 63-Pixel Plasmonic Photoconductive Terahertz Focal-Plane Array Phase Shifter-Relaxed and Control-Relaxed Continuous Tuning 4×4 Butler Matrix A Compact PCB Gasket for Waveguide Leakage Suppression at 110-170 GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1