Rahman Setiadi, Abdel Mohammad Deghati, A. S. Ashfahani, Albert Malvin Richal Dading, Gany Gunawan, Nur Mahfudhin, Zulmi Ramadhana, Sakti Dwitama, R. Rachman, R-Aulia Muhammad Rizky, I. Abidiy, E. Dharma, Rico Pradityo, M. N. Jamal, M. Sobirin, Fata Yunus, William Lodiman
{"title":"大入口孔射孔是Tunu气藏在保持储层产能的同时优化过油管防砂技术的新选择","authors":"Rahman Setiadi, Abdel Mohammad Deghati, A. S. Ashfahani, Albert Malvin Richal Dading, Gany Gunawan, Nur Mahfudhin, Zulmi Ramadhana, Sakti Dwitama, R. Rachman, R-Aulia Muhammad Rizky, I. Abidiy, E. Dharma, Rico Pradityo, M. N. Jamal, M. Sobirin, Fata Yunus, William Lodiman","doi":"10.2118/205757-ms","DOIUrl":null,"url":null,"abstract":"\n Mahakam block with one of its gas fields, Tunu, has been developed for decades. Hundreds of wells were drilled to unlock layered sand reservoirs ranging from unconsolidated to consolidated reservoirs. Through field experience, well architecture is actively developing. The latest architecture, targeting shallow reservoirs only, is called Shallow Light Architecture (SLA). The well is completed with 3.5in production tubing cemented inside a 8.5in open-hole reservoir section. SLA is the default architecture for chemical sand consolidation (SCON) or thru-tubing screens as subsurface sand control.\n Perforation is performed by deep penetration (DP) hollow-carrier guns deployed with double-density to maximize open area and reduce sand production risk. DP charges were used based on the requirement to bypass near-wellbore damage, which is the same practice used in consolidated sand reservoir perforating. As more marginal reservoirs need to be unlocked, big entrance hole (BEH) perforation was initiated for the current sand control optimization alternative by SCON chemical reduction with shorter perforation intervals; and for thru-tubing metal screen performance improvement by placement in front of perforation entrance tunnels with minimum erosion risk.\n BEH was then studied as it has never been used previously in Mahakam with thru-tubing applications. Simulation and pilot well trials were explored to ensure that a short penetration would not significantly impact reservoir delivery on SLA wells. Inflow performance relationship (IPR) analysis resulted in slight additional drawdown compared to the calculated drawdown using DP at 2.5 MMscfd as an average gas rate in current thru-tubing sand control, which was considered acceptable from the operating envelope perspective.\n In total, BEH perforation was executed on ten wells with reservoir permeability range from 220 millidarcy (mD) to an extreme case of 3000 mD. Various SCON treatments were injected at optimized perforation lengths by cutting chemical costs up to 60% with sand-free production at a particular parameter and chemical type. On the other hand, in the application using screens, evaluation was not conclusive due to screen sizing issues for some installations. However, in-situ gas velocity could be reduced to the theoretical erosion velocity limit for a metal screen.\n This new approach to BEH charges utilization has a potential solution optimizing current SCON costs while also reducing erosion risk for the through tubing screen application to improve its performance. By using short penetration of charges, this approach was successfully implemented without jeopardizing reservoir's deliverability.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big Entrance Hole Perforation as New Alternative Approach to Optimize Thru-Tubing Sand Control Technique While Maintaining Reservoir Deliverability for Tunu Gas Reservoir in Unconsolidated Sand Formation\",\"authors\":\"Rahman Setiadi, Abdel Mohammad Deghati, A. S. Ashfahani, Albert Malvin Richal Dading, Gany Gunawan, Nur Mahfudhin, Zulmi Ramadhana, Sakti Dwitama, R. Rachman, R-Aulia Muhammad Rizky, I. Abidiy, E. Dharma, Rico Pradityo, M. N. Jamal, M. Sobirin, Fata Yunus, William Lodiman\",\"doi\":\"10.2118/205757-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mahakam block with one of its gas fields, Tunu, has been developed for decades. Hundreds of wells were drilled to unlock layered sand reservoirs ranging from unconsolidated to consolidated reservoirs. Through field experience, well architecture is actively developing. The latest architecture, targeting shallow reservoirs only, is called Shallow Light Architecture (SLA). The well is completed with 3.5in production tubing cemented inside a 8.5in open-hole reservoir section. SLA is the default architecture for chemical sand consolidation (SCON) or thru-tubing screens as subsurface sand control.\\n Perforation is performed by deep penetration (DP) hollow-carrier guns deployed with double-density to maximize open area and reduce sand production risk. DP charges were used based on the requirement to bypass near-wellbore damage, which is the same practice used in consolidated sand reservoir perforating. As more marginal reservoirs need to be unlocked, big entrance hole (BEH) perforation was initiated for the current sand control optimization alternative by SCON chemical reduction with shorter perforation intervals; and for thru-tubing metal screen performance improvement by placement in front of perforation entrance tunnels with minimum erosion risk.\\n BEH was then studied as it has never been used previously in Mahakam with thru-tubing applications. Simulation and pilot well trials were explored to ensure that a short penetration would not significantly impact reservoir delivery on SLA wells. Inflow performance relationship (IPR) analysis resulted in slight additional drawdown compared to the calculated drawdown using DP at 2.5 MMscfd as an average gas rate in current thru-tubing sand control, which was considered acceptable from the operating envelope perspective.\\n In total, BEH perforation was executed on ten wells with reservoir permeability range from 220 millidarcy (mD) to an extreme case of 3000 mD. Various SCON treatments were injected at optimized perforation lengths by cutting chemical costs up to 60% with sand-free production at a particular parameter and chemical type. On the other hand, in the application using screens, evaluation was not conclusive due to screen sizing issues for some installations. However, in-situ gas velocity could be reduced to the theoretical erosion velocity limit for a metal screen.\\n This new approach to BEH charges utilization has a potential solution optimizing current SCON costs while also reducing erosion risk for the through tubing screen application to improve its performance. By using short penetration of charges, this approach was successfully implemented without jeopardizing reservoir's deliverability.\",\"PeriodicalId\":11017,\"journal\":{\"name\":\"Day 2 Wed, October 13, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 13, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205757-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 13, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205757-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Big Entrance Hole Perforation as New Alternative Approach to Optimize Thru-Tubing Sand Control Technique While Maintaining Reservoir Deliverability for Tunu Gas Reservoir in Unconsolidated Sand Formation
Mahakam block with one of its gas fields, Tunu, has been developed for decades. Hundreds of wells were drilled to unlock layered sand reservoirs ranging from unconsolidated to consolidated reservoirs. Through field experience, well architecture is actively developing. The latest architecture, targeting shallow reservoirs only, is called Shallow Light Architecture (SLA). The well is completed with 3.5in production tubing cemented inside a 8.5in open-hole reservoir section. SLA is the default architecture for chemical sand consolidation (SCON) or thru-tubing screens as subsurface sand control.
Perforation is performed by deep penetration (DP) hollow-carrier guns deployed with double-density to maximize open area and reduce sand production risk. DP charges were used based on the requirement to bypass near-wellbore damage, which is the same practice used in consolidated sand reservoir perforating. As more marginal reservoirs need to be unlocked, big entrance hole (BEH) perforation was initiated for the current sand control optimization alternative by SCON chemical reduction with shorter perforation intervals; and for thru-tubing metal screen performance improvement by placement in front of perforation entrance tunnels with minimum erosion risk.
BEH was then studied as it has never been used previously in Mahakam with thru-tubing applications. Simulation and pilot well trials were explored to ensure that a short penetration would not significantly impact reservoir delivery on SLA wells. Inflow performance relationship (IPR) analysis resulted in slight additional drawdown compared to the calculated drawdown using DP at 2.5 MMscfd as an average gas rate in current thru-tubing sand control, which was considered acceptable from the operating envelope perspective.
In total, BEH perforation was executed on ten wells with reservoir permeability range from 220 millidarcy (mD) to an extreme case of 3000 mD. Various SCON treatments were injected at optimized perforation lengths by cutting chemical costs up to 60% with sand-free production at a particular parameter and chemical type. On the other hand, in the application using screens, evaluation was not conclusive due to screen sizing issues for some installations. However, in-situ gas velocity could be reduced to the theoretical erosion velocity limit for a metal screen.
This new approach to BEH charges utilization has a potential solution optimizing current SCON costs while also reducing erosion risk for the through tubing screen application to improve its performance. By using short penetration of charges, this approach was successfully implemented without jeopardizing reservoir's deliverability.