{"title":"季铵化合物:益处、危害和风险的观点","authors":"T. Osimitz, W. Droege","doi":"10.1177/23978473211049085","DOIUrl":null,"url":null,"abstract":"Quaternary ammonium compounds are antimicrobial chemicals that provide significant public health benefits by controlling bacteria and viruses that cause infections such as colds, flu, and COVID. The benefits of antimicrobial QACs are seen in increased quality-of-life measures, such as reduced time away from work and school and reduced medical costs. As active antimicrobial agents, QACs and QAC-containing consumer and professional products are highly regulated by authorities such as the US Environmental Protection Agency and the European Chemicals Agency. A complete database of guideline safety studies, covering human and environmental health, is available and has been reviewed by multiple regulatory agencies globally. The conclusions of regulatory agencies from these studies indicate no concerns regarding reproductive effects, genotoxicity, carcinogenicity, or other systemic adverse effects. In contrast, some published academic studies provide mixed findings on lipid synthesis, reproductive effects, and asthma. However, many of these studies have been found not to be robust in design and lacked appropriate controls to support conclusions of a clear and direct association with an adverse effect. The hazard data for the QACs show that their primary critical effects are point-of-contact effects such as irritation, which exhibit a threshold and occur in a dose–response manner. This review compares toxicity information for QACs, examines human exposures, and quantifies the risks estimated from QAC product use. QACs are an important cleaning and hygiene tool, and the abundance of safety data generated for them provides assurance they can be safely used in professional and household products.","PeriodicalId":23155,"journal":{"name":"Toxicology Research and Application","volume":"14 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Quaternary ammonium compounds: perspectives on benefits, hazards, and risk\",\"authors\":\"T. Osimitz, W. Droege\",\"doi\":\"10.1177/23978473211049085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quaternary ammonium compounds are antimicrobial chemicals that provide significant public health benefits by controlling bacteria and viruses that cause infections such as colds, flu, and COVID. The benefits of antimicrobial QACs are seen in increased quality-of-life measures, such as reduced time away from work and school and reduced medical costs. As active antimicrobial agents, QACs and QAC-containing consumer and professional products are highly regulated by authorities such as the US Environmental Protection Agency and the European Chemicals Agency. A complete database of guideline safety studies, covering human and environmental health, is available and has been reviewed by multiple regulatory agencies globally. The conclusions of regulatory agencies from these studies indicate no concerns regarding reproductive effects, genotoxicity, carcinogenicity, or other systemic adverse effects. In contrast, some published academic studies provide mixed findings on lipid synthesis, reproductive effects, and asthma. However, many of these studies have been found not to be robust in design and lacked appropriate controls to support conclusions of a clear and direct association with an adverse effect. The hazard data for the QACs show that their primary critical effects are point-of-contact effects such as irritation, which exhibit a threshold and occur in a dose–response manner. This review compares toxicity information for QACs, examines human exposures, and quantifies the risks estimated from QAC product use. QACs are an important cleaning and hygiene tool, and the abundance of safety data generated for them provides assurance they can be safely used in professional and household products.\",\"PeriodicalId\":23155,\"journal\":{\"name\":\"Toxicology Research and Application\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23978473211049085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23978473211049085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quaternary ammonium compounds: perspectives on benefits, hazards, and risk
Quaternary ammonium compounds are antimicrobial chemicals that provide significant public health benefits by controlling bacteria and viruses that cause infections such as colds, flu, and COVID. The benefits of antimicrobial QACs are seen in increased quality-of-life measures, such as reduced time away from work and school and reduced medical costs. As active antimicrobial agents, QACs and QAC-containing consumer and professional products are highly regulated by authorities such as the US Environmental Protection Agency and the European Chemicals Agency. A complete database of guideline safety studies, covering human and environmental health, is available and has been reviewed by multiple regulatory agencies globally. The conclusions of regulatory agencies from these studies indicate no concerns regarding reproductive effects, genotoxicity, carcinogenicity, or other systemic adverse effects. In contrast, some published academic studies provide mixed findings on lipid synthesis, reproductive effects, and asthma. However, many of these studies have been found not to be robust in design and lacked appropriate controls to support conclusions of a clear and direct association with an adverse effect. The hazard data for the QACs show that their primary critical effects are point-of-contact effects such as irritation, which exhibit a threshold and occur in a dose–response manner. This review compares toxicity information for QACs, examines human exposures, and quantifies the risks estimated from QAC product use. QACs are an important cleaning and hygiene tool, and the abundance of safety data generated for them provides assurance they can be safely used in professional and household products.