随机篮子试验中信息借鉴的贝叶斯建模策略。

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series C-Applied Statistics Pub Date : 2022-10-28 DOI:10.1111/rssc.12602
Luke O. Ouma, Michael J. Grayling, James M. S. Wason, Haiyan Zheng
{"title":"随机篮子试验中信息借鉴的贝叶斯建模策略。","authors":"Luke O. Ouma,&nbsp;Michael J. Grayling,&nbsp;James M. S. Wason,&nbsp;Haiyan Zheng","doi":"10.1111/rssc.12602","DOIUrl":null,"url":null,"abstract":"<p>Basket trials are an innovative precision medicine clinical trial design evaluating a single targeted therapy across multiple diseases that share a common characteristic. To date, most basket trials have been conducted in early-phase oncology settings, for which several Bayesian methods permitting information sharing across subtrials have been proposed. With the increasing interest of implementing randomised basket trials, information borrowing could be exploited in two ways; considering the commensurability of either the treatment effects or the outcomes specific to each of the treatment groups between the subtrials. In this article, we extend a previous analysis model based on distributional discrepancy for borrowing over the subtrial treatment effects (‘treatment effect borrowing’, TEB) to borrowing over the subtrial groupwise responses (‘treatment response borrowing’, TRB). Simulation results demonstrate that both modelling strategies provide substantial gains over an approach with no borrowing. TRB outperforms TEB especially when subtrial sample sizes are small on all operational characteristics, while the latter has considerable gains in performance over TRB when subtrial sample sizes are large, or the treatment effects and groupwise mean responses are noticeably heterogeneous across subtrials. Further, we notice that TRB, and TEB can potentially lead to different conclusions in the analysis of real data.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"71 5","pages":"2014-2037"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827857/pdf/","citationCount":"3","resultStr":"{\"title\":\"Bayesian modelling strategies for borrowing of information in randomised basket trials\",\"authors\":\"Luke O. Ouma,&nbsp;Michael J. Grayling,&nbsp;James M. S. Wason,&nbsp;Haiyan Zheng\",\"doi\":\"10.1111/rssc.12602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Basket trials are an innovative precision medicine clinical trial design evaluating a single targeted therapy across multiple diseases that share a common characteristic. To date, most basket trials have been conducted in early-phase oncology settings, for which several Bayesian methods permitting information sharing across subtrials have been proposed. With the increasing interest of implementing randomised basket trials, information borrowing could be exploited in two ways; considering the commensurability of either the treatment effects or the outcomes specific to each of the treatment groups between the subtrials. In this article, we extend a previous analysis model based on distributional discrepancy for borrowing over the subtrial treatment effects (‘treatment effect borrowing’, TEB) to borrowing over the subtrial groupwise responses (‘treatment response borrowing’, TRB). Simulation results demonstrate that both modelling strategies provide substantial gains over an approach with no borrowing. TRB outperforms TEB especially when subtrial sample sizes are small on all operational characteristics, while the latter has considerable gains in performance over TRB when subtrial sample sizes are large, or the treatment effects and groupwise mean responses are noticeably heterogeneous across subtrials. Further, we notice that TRB, and TEB can potentially lead to different conclusions in the analysis of real data.</p>\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"71 5\",\"pages\":\"2014-2037\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827857/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12602\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12602","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

篮子试验是一种创新的精准医学临床试验设计,用于评估具有共同特征的多种疾病的单一靶向治疗。到目前为止,大多数篮子试验都是在早期肿瘤学环境中进行的,已经提出了几种允许在子树之间共享信息的贝叶斯方法。随着人们对实施随机篮子试验越来越感兴趣,信息借用可以通过两种方式加以利用;考虑治疗效果或每个治疗组特有的结果在子树之间的可公度。在这篇文章中,我们将先前基于亚治疗效应的借款分布差异的分析模型(“治疗效应借款”,TEB)扩展到亚治疗组反应的借款(“治疗反应借款”,TRB)。仿真结果表明,与不借款的方法相比,这两种建模策略都提供了实质性的收益。TRB的性能优于TEB,尤其是当减法样本量在所有操作特性上都很小时,而当减法样本大时,或者处理效果和分组平均响应在减法之间明显不同时,后者在性能上比TRB有相当大的提高。此外,我们注意到TRB和TEB在实际数据分析中可能会导致不同的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian modelling strategies for borrowing of information in randomised basket trials

Basket trials are an innovative precision medicine clinical trial design evaluating a single targeted therapy across multiple diseases that share a common characteristic. To date, most basket trials have been conducted in early-phase oncology settings, for which several Bayesian methods permitting information sharing across subtrials have been proposed. With the increasing interest of implementing randomised basket trials, information borrowing could be exploited in two ways; considering the commensurability of either the treatment effects or the outcomes specific to each of the treatment groups between the subtrials. In this article, we extend a previous analysis model based on distributional discrepancy for borrowing over the subtrial treatment effects (‘treatment effect borrowing’, TEB) to borrowing over the subtrial groupwise responses (‘treatment response borrowing’, TRB). Simulation results demonstrate that both modelling strategies provide substantial gains over an approach with no borrowing. TRB outperforms TEB especially when subtrial sample sizes are small on all operational characteristics, while the latter has considerable gains in performance over TRB when subtrial sample sizes are large, or the treatment effects and groupwise mean responses are noticeably heterogeneous across subtrials. Further, we notice that TRB, and TEB can potentially lead to different conclusions in the analysis of real data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
期刊最新文献
tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction. Measuring the impact of new risk factors within survival models. Non-parametric Bayesian approach to multiple treatment comparisons in network meta-analysis with application to comparisons of anti-depressants. Joint modelling of survival and backwards recurrence outcomes: an analysis of factors associated with fertility treatment in the U.S. Walking fingerprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1