实验两级水培生长细胞的热分析与气候控制

H. Vitoshkin, V. Haslavsky
{"title":"实验两级水培生长细胞的热分析与气候控制","authors":"H. Vitoshkin, V. Haslavsky","doi":"10.11159/htff20.136","DOIUrl":null,"url":null,"abstract":"The research focuses on providing optimal conditions for growth, energy efficiency, and sustainability, controlled and autonomous environment. A two-level hydroponic growth cell is proposed as an experimental facility to design of in-door multilayer plant production systems. The goal of the system is to serve as a practical and useful alternative to traditional field agriculture. The growth cell has of 1 m each level area and composites two rows of hydroponic growth elements. The cell is designed to carry out multiple functions essential to sustain plant growth that includes: water circulation, nutrients delivery, environment sensing, ventilation, and artificial selective lighting. The series of repeated growth cycles have been successfully performed and compared against a conventional greenhouse facility using lettuce as a model crop. The factors such as inside temperature and humidity, leaf temperature, illumination under three different lighting types: white light, red-blue light, sunlight were monitored and maintained by a developed control system. Light distribution (photosynthetic active radiation) and yield (leaf size and fresh weight) were assessed. It is shown that sunlight is the more profitable type of lighting for lettuce crops even under warm outside environmental conditions. These results illustrate that the use of transparent covering materials offer great potential for energy save cultivation and should be considered for a plant-factory design.","PeriodicalId":20694,"journal":{"name":"Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermal Analysis and Climate Control of Experimental two-level Hydroponic Growth Cell\",\"authors\":\"H. Vitoshkin, V. Haslavsky\",\"doi\":\"10.11159/htff20.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research focuses on providing optimal conditions for growth, energy efficiency, and sustainability, controlled and autonomous environment. A two-level hydroponic growth cell is proposed as an experimental facility to design of in-door multilayer plant production systems. The goal of the system is to serve as a practical and useful alternative to traditional field agriculture. The growth cell has of 1 m each level area and composites two rows of hydroponic growth elements. The cell is designed to carry out multiple functions essential to sustain plant growth that includes: water circulation, nutrients delivery, environment sensing, ventilation, and artificial selective lighting. The series of repeated growth cycles have been successfully performed and compared against a conventional greenhouse facility using lettuce as a model crop. The factors such as inside temperature and humidity, leaf temperature, illumination under three different lighting types: white light, red-blue light, sunlight were monitored and maintained by a developed control system. Light distribution (photosynthetic active radiation) and yield (leaf size and fresh weight) were assessed. It is shown that sunlight is the more profitable type of lighting for lettuce crops even under warm outside environmental conditions. These results illustrate that the use of transparent covering materials offer great potential for energy save cultivation and should be considered for a plant-factory design.\",\"PeriodicalId\":20694,\"journal\":{\"name\":\"Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/htff20.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/htff20.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究的重点是为增长、能源效率和可持续性、受控和自主环境提供最佳条件。提出了一种两层水培生长细胞作为室内多层植物生产系统设计的实验装置。该系统的目标是作为传统田间农业的一种实用和有用的替代方案。生长细胞每层面积1 m,由两排水培生长单元组成。细胞被设计为执行维持植物生长所必需的多种功能,包括:水循环、营养输送、环境感知、通风和人工选择性照明。一系列重复的生长周期已经成功地进行了,并与使用生菜作为模式作物的传统温室设施进行了比较。在白光、红蓝光和日光三种不同照明类型下,对室内温湿度、叶温、照度等因素进行了监测和控制。评估光分布(光合有效辐射)和产量(叶片大小和鲜重)。研究表明,即使在温暖的外部环境条件下,阳光也是生菜作物更有利的照明类型。这些结果表明,使用透明覆盖材料具有巨大的节能栽培潜力,应考虑在植物-工厂设计中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Analysis and Climate Control of Experimental two-level Hydroponic Growth Cell
The research focuses on providing optimal conditions for growth, energy efficiency, and sustainability, controlled and autonomous environment. A two-level hydroponic growth cell is proposed as an experimental facility to design of in-door multilayer plant production systems. The goal of the system is to serve as a practical and useful alternative to traditional field agriculture. The growth cell has of 1 m each level area and composites two rows of hydroponic growth elements. The cell is designed to carry out multiple functions essential to sustain plant growth that includes: water circulation, nutrients delivery, environment sensing, ventilation, and artificial selective lighting. The series of repeated growth cycles have been successfully performed and compared against a conventional greenhouse facility using lettuce as a model crop. The factors such as inside temperature and humidity, leaf temperature, illumination under three different lighting types: white light, red-blue light, sunlight were monitored and maintained by a developed control system. Light distribution (photosynthetic active radiation) and yield (leaf size and fresh weight) were assessed. It is shown that sunlight is the more profitable type of lighting for lettuce crops even under warm outside environmental conditions. These results illustrate that the use of transparent covering materials offer great potential for energy save cultivation and should be considered for a plant-factory design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
A Serious Game for Evaluating the Competencies of Environmental Consultants Application of Network Science to Extend the AHP and QFD Methods Liberation analysis of South African Middle group seam chromite ore processed with Vertical Shaft Impactor Crusher Advantages in the design of open-pit and quarries by computer mean Study of the geomechanical behaviour of different saline typologies in the Catalan basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1