指令解码器的结构化随机差分测试

Nathan Jay, B. Miller
{"title":"指令解码器的结构化随机差分测试","authors":"Nathan Jay, B. Miller","doi":"10.1109/SANER.2018.8330199","DOIUrl":null,"url":null,"abstract":"Decoding binary executable files is a critical facility for software analysis, including debugging, performance monitoring, malware detection, cyber forensics, and sandboxing, among other techniques. As a foundational capability, binary decoding must be consistently correct for the techniques that rely on it to be viable. Unfortunately, modern instruction sets are huge and the encodings are complex, so as a result, modern binary decoders are buggy. In this paper, we present a testing methodology that automatically infers structural information for an instruction set and uses the inferred structure to efficiently generate structured-random test cases independent of the instruction set being tested. Our testing methodology includes automatic output verification using differential analysis and reassembly to generate error reports. This testing methodology requires little instruction-set-specific knowledge, allowing rapid testing of decoders for new architectures and extensions to existing ones. We have implemented our testing procedure in a tool name Fleece and used it to test multiple binary decoders (Intel XED, libopcodes, LLVM, Dyninst and Capstone) on multiple architectures (x86, ARM and PowerPC). Our testing efficiently covered thousands of instruction format variations for each instruction set and uncovered decoding bugs in every decoder we tested.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"11 9","pages":"84-94"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Structured random differential testing of instruction decoders\",\"authors\":\"Nathan Jay, B. Miller\",\"doi\":\"10.1109/SANER.2018.8330199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decoding binary executable files is a critical facility for software analysis, including debugging, performance monitoring, malware detection, cyber forensics, and sandboxing, among other techniques. As a foundational capability, binary decoding must be consistently correct for the techniques that rely on it to be viable. Unfortunately, modern instruction sets are huge and the encodings are complex, so as a result, modern binary decoders are buggy. In this paper, we present a testing methodology that automatically infers structural information for an instruction set and uses the inferred structure to efficiently generate structured-random test cases independent of the instruction set being tested. Our testing methodology includes automatic output verification using differential analysis and reassembly to generate error reports. This testing methodology requires little instruction-set-specific knowledge, allowing rapid testing of decoders for new architectures and extensions to existing ones. We have implemented our testing procedure in a tool name Fleece and used it to test multiple binary decoders (Intel XED, libopcodes, LLVM, Dyninst and Capstone) on multiple architectures (x86, ARM and PowerPC). Our testing efficiently covered thousands of instruction format variations for each instruction set and uncovered decoding bugs in every decoder we tested.\",\"PeriodicalId\":6602,\"journal\":{\"name\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"11 9\",\"pages\":\"84-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2018.8330199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

解码二进制可执行文件是软件分析的关键工具,包括调试、性能监控、恶意软件检测、网络取证和沙盒等技术。作为一项基本能力,二进制解码必须始终正确,这样依赖于它的技术才可行。不幸的是,现代的指令集是巨大的,编码是复杂的,因此,现代二进制解码器是错误的。在本文中,我们提出了一种测试方法,可以自动推断指令集的结构信息,并使用推断的结构有效地生成独立于被测试指令集的结构化随机测试用例。我们的测试方法包括使用差异分析和重新组装来生成错误报告的自动输出验证。这种测试方法几乎不需要特定于指令集的知识,允许对新架构和现有架构的扩展的解码器进行快速测试。我们已经在一个名为Fleece的工具中实现了我们的测试过程,并使用它在多个架构(x86, ARM和PowerPC)上测试多个二进制解码器(Intel XED, libopcodes, LLVM, Dyninst和Capstone)。我们的测试有效地覆盖了每个指令集的数千种指令格式变化,并发现了我们测试的每个解码器中的解码错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structured random differential testing of instruction decoders
Decoding binary executable files is a critical facility for software analysis, including debugging, performance monitoring, malware detection, cyber forensics, and sandboxing, among other techniques. As a foundational capability, binary decoding must be consistently correct for the techniques that rely on it to be viable. Unfortunately, modern instruction sets are huge and the encodings are complex, so as a result, modern binary decoders are buggy. In this paper, we present a testing methodology that automatically infers structural information for an instruction set and uses the inferred structure to efficiently generate structured-random test cases independent of the instruction set being tested. Our testing methodology includes automatic output verification using differential analysis and reassembly to generate error reports. This testing methodology requires little instruction-set-specific knowledge, allowing rapid testing of decoders for new architectures and extensions to existing ones. We have implemented our testing procedure in a tool name Fleece and used it to test multiple binary decoders (Intel XED, libopcodes, LLVM, Dyninst and Capstone) on multiple architectures (x86, ARM and PowerPC). Our testing efficiently covered thousands of instruction format variations for each instruction set and uncovered decoding bugs in every decoder we tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the integration of user feedback in automated testing of Android applications The Statechart Workbench: Enabling scalable software event log analysis using process mining Detecting code smells using machine learning techniques: Are we there yet? Classifying stack overflow posts on API issues Re-evaluating method-level bug prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1