共同开发用于全球树木三维生态理解的国际TLS网络:系统架构、遥感模型和功能前景

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Science and Ecotechnology Pub Date : 2023-10-01 DOI:10.1016/j.ese.2023.100257
Yi Lin , Sagi Filin , Roland Billen , Nobuya Mizoue
{"title":"共同开发用于全球树木三维生态理解的国际TLS网络:系统架构、遥感模型和功能前景","authors":"Yi Lin ,&nbsp;Sagi Filin ,&nbsp;Roland Billen ,&nbsp;Nobuya Mizoue","doi":"10.1016/j.ese.2023.100257","DOIUrl":null,"url":null,"abstract":"<div><p>Trees are spread worldwide, as the watchmen that experience the intricate ecological effects caused by various environmental factors. In order to better understand such effects, it is preferential to achieve finely and fully mapped global trees and their environments. For this task, aerial and satellite-based remote sensing (RS) methods have been developed. However, a critical branch regarding the apparent forms of trees has significantly fallen behind due to the technical deficiency found within their global-scale surveying methods. Now, terrestrial laser scanning (TLS), a state-of-the-art RS technology, is useful for the <em>in situ</em> three-dimensional (3D) mapping of trees and their environments. Thus, we proposed co-developing an international TLS network as a macroscale ecotechnology to increase the 3D ecological understanding of global trees. First, we generated the system architecture and tested the available RS models to deepen its ground stakes. Then, we verified the ecotechnology regarding the identification of its theoretical feasibility, a review of its technical preparations, and a case testification based on a prototype we designed. Next, we conducted its functional prospects by previewing its scientific and technical potentials and its functional extensibility. Finally, we summarized its technical and scientific challenges, which can be used as the cutting points to promote the improvement of this technology in future studies. Overall, with the implication of establishing a novel cornerstone-sense ecotechnology, the co-development of an international TLS network can revolutionize the 3D ecological understanding of global trees and create new fields of research from 3D global tree structural ecology to 3D macroecology.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"16 ","pages":"Article 100257"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/25/main.PMC10024182.pdf","citationCount":"1","resultStr":"{\"title\":\"Co-developing an international TLS network for the 3D ecological understanding of global trees: System architecture, remote sensing models, and functional prospects\",\"authors\":\"Yi Lin ,&nbsp;Sagi Filin ,&nbsp;Roland Billen ,&nbsp;Nobuya Mizoue\",\"doi\":\"10.1016/j.ese.2023.100257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trees are spread worldwide, as the watchmen that experience the intricate ecological effects caused by various environmental factors. In order to better understand such effects, it is preferential to achieve finely and fully mapped global trees and their environments. For this task, aerial and satellite-based remote sensing (RS) methods have been developed. However, a critical branch regarding the apparent forms of trees has significantly fallen behind due to the technical deficiency found within their global-scale surveying methods. Now, terrestrial laser scanning (TLS), a state-of-the-art RS technology, is useful for the <em>in situ</em> three-dimensional (3D) mapping of trees and their environments. Thus, we proposed co-developing an international TLS network as a macroscale ecotechnology to increase the 3D ecological understanding of global trees. First, we generated the system architecture and tested the available RS models to deepen its ground stakes. Then, we verified the ecotechnology regarding the identification of its theoretical feasibility, a review of its technical preparations, and a case testification based on a prototype we designed. Next, we conducted its functional prospects by previewing its scientific and technical potentials and its functional extensibility. Finally, we summarized its technical and scientific challenges, which can be used as the cutting points to promote the improvement of this technology in future studies. Overall, with the implication of establishing a novel cornerstone-sense ecotechnology, the co-development of an international TLS network can revolutionize the 3D ecological understanding of global trees and create new fields of research from 3D global tree structural ecology to 3D macroecology.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"16 \",\"pages\":\"Article 100257\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/25/main.PMC10024182.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498423000224\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000224","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

树木遍布世界各地,作为守望者,经历着各种环境因素造成的错综复杂的生态效应。为了更好地理解这种效果,最好实现精细和完整的全局树及其环境映射。为了完成这项任务,已经开发了航空和卫星遥感(RS)方法。然而,由于在全球尺度测量方法中发现的技术缺陷,关于树木表面形态的一个关键分支已经明显落后。现在,地面激光扫描(TLS)是一种最先进的遥感技术,可用于树木及其环境的原位三维(3D)测绘。因此,我们建议共同开发一个国际TLS网络,作为一种宏观生态技术,以增加对全球树木的三维生态理解。首先,我们生成了系统架构,并测试了可用的RS模型以加深其地桩。然后,我们验证了生态技术的理论可行性,回顾了其技术准备,并基于我们设计的原型进行了案例验证。其次,对其科技潜力和功能可扩展性进行了展望。最后,总结了该技术面临的技术和科学挑战,可作为今后研究中推动该技术改进的切入点。总的来说,通过建立一种新的基石意义上的生态技术,国际TLS网络的共同开发可以彻底改变全球树木的3D生态认识,并创造从3D全球树木结构生态学到3D宏观生态学的新研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-developing an international TLS network for the 3D ecological understanding of global trees: System architecture, remote sensing models, and functional prospects

Trees are spread worldwide, as the watchmen that experience the intricate ecological effects caused by various environmental factors. In order to better understand such effects, it is preferential to achieve finely and fully mapped global trees and their environments. For this task, aerial and satellite-based remote sensing (RS) methods have been developed. However, a critical branch regarding the apparent forms of trees has significantly fallen behind due to the technical deficiency found within their global-scale surveying methods. Now, terrestrial laser scanning (TLS), a state-of-the-art RS technology, is useful for the in situ three-dimensional (3D) mapping of trees and their environments. Thus, we proposed co-developing an international TLS network as a macroscale ecotechnology to increase the 3D ecological understanding of global trees. First, we generated the system architecture and tested the available RS models to deepen its ground stakes. Then, we verified the ecotechnology regarding the identification of its theoretical feasibility, a review of its technical preparations, and a case testification based on a prototype we designed. Next, we conducted its functional prospects by previewing its scientific and technical potentials and its functional extensibility. Finally, we summarized its technical and scientific challenges, which can be used as the cutting points to promote the improvement of this technology in future studies. Overall, with the implication of establishing a novel cornerstone-sense ecotechnology, the co-development of an international TLS network can revolutionize the 3D ecological understanding of global trees and create new fields of research from 3D global tree structural ecology to 3D macroecology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
期刊最新文献
Editorial Board Accelerating the establishment of a new science-policy panel to address the triple planetary crisis Rapid identification of antibiotic resistance gene hosts by prescreening ARG-like reads Enhanced removal of chiral emerging contaminants by an electroactive biofilter Mitigating household air pollution exposure through kitchen renovation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1