水溶液中臭氧与腺嘌呤和胞嘧啶反应动力学

A. A. Maksyutova, E. R. Khaynasova, Yuriy S. Zimin
{"title":"水溶液中臭氧与腺嘌呤和胞嘧啶反应动力学","authors":"A. A. Maksyutova, E. R. Khaynasova, Yuriy S. Zimin","doi":"10.6060/ivkkt.20206310.6263","DOIUrl":null,"url":null,"abstract":"The ultraviolet spectroscopy method has been applied to study the kinetics of the ozone reactions with nitrogenous bases (NB), namely adenine and cytosine in aqueous solutions. At the first research stage, the range of NB working concentrations has been determined. It was found that linear dependences between optical densities and concentrations of nitrogenous bases aqueous solutions are quite reliable, with correlation coefficients r ≥ 0.998, are satisfied up to [NB] = 2.3 ∙ 10–4 mol/l. According to the Bouguer-Lambert-Beer law, adenine and cytosine extinction coefficients in aqueous solutions were determined and subsequently used to calculate their residual concentrations. At the next stage, the kinetics of nitrogenous bases ozonized oxidation was studied with equal initial concentrations of the starting substances ([NB]0 = [О3]0). The results revealed that the kinetic consumption curves of the starting reagents are fairly well linearized (r ≥ 0.996) in the second-order reaction equation coordinates. As found with the bubbling installation, 1 mol of the absorbed ozone falls on 1 mol of the used NB. Thus, the reactions of ozone with adenine and cytosine explicitly proceed according to the second-order kinetic laws (the first – according to О3 and the first – according to NB). The rate constants were calculated by the integral reaction equations, the values of which indicate a higher ozone reactivity in relation to nitrogen bases. The temperature dependences of the second-order rate constants was studied ranging 285-309 K, and the activation parameters (pre-exponential factors and activation energies) of the ozone reactions with adenine and cytosine in aqueous solutions were determined.","PeriodicalId":14640,"journal":{"name":"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA","volume":"6 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"KINETICS OF OZONE REACTIONS WITH ADENINE AND CYTOSINE IN AQUEOUS SOLUTIONS\",\"authors\":\"A. A. Maksyutova, E. R. Khaynasova, Yuriy S. Zimin\",\"doi\":\"10.6060/ivkkt.20206310.6263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultraviolet spectroscopy method has been applied to study the kinetics of the ozone reactions with nitrogenous bases (NB), namely adenine and cytosine in aqueous solutions. At the first research stage, the range of NB working concentrations has been determined. It was found that linear dependences between optical densities and concentrations of nitrogenous bases aqueous solutions are quite reliable, with correlation coefficients r ≥ 0.998, are satisfied up to [NB] = 2.3 ∙ 10–4 mol/l. According to the Bouguer-Lambert-Beer law, adenine and cytosine extinction coefficients in aqueous solutions were determined and subsequently used to calculate their residual concentrations. At the next stage, the kinetics of nitrogenous bases ozonized oxidation was studied with equal initial concentrations of the starting substances ([NB]0 = [О3]0). The results revealed that the kinetic consumption curves of the starting reagents are fairly well linearized (r ≥ 0.996) in the second-order reaction equation coordinates. As found with the bubbling installation, 1 mol of the absorbed ozone falls on 1 mol of the used NB. Thus, the reactions of ozone with adenine and cytosine explicitly proceed according to the second-order kinetic laws (the first – according to О3 and the first – according to NB). The rate constants were calculated by the integral reaction equations, the values of which indicate a higher ozone reactivity in relation to nitrogen bases. The temperature dependences of the second-order rate constants was studied ranging 285-309 K, and the activation parameters (pre-exponential factors and activation energies) of the ozone reactions with adenine and cytosine in aqueous solutions were determined.\",\"PeriodicalId\":14640,\"journal\":{\"name\":\"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA\",\"volume\":\"6 47\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6060/ivkkt.20206310.6263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6060/ivkkt.20206310.6263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

应用紫外光谱法研究了臭氧与含氮碱(NB),即腺嘌呤和胞嘧啶在水溶液中的反应动力学。在第一阶段的研究中,确定了铌的工作浓度范围。结果表明,在[NB] = 2.3∙10-4 mol/l范围内,光密度与含氮碱水溶液浓度之间的线性关系较为可靠,相关系数r≥0.998。根据布格-兰伯特-比尔定律,测定水溶液中腺嘌呤和胞嘧啶的消光系数,并计算其残留浓度。下一阶段,在初始物质浓度相等([NB]0 = [О3]0)的条件下,研究了氮基臭氧氧化的动力学。结果表明,起始试剂的动力学消耗曲线在二级反应方程坐标上具有较好的线性化(r≥0.996)。在鼓泡装置中发现,1 mol被吸收的臭氧落在1 mol使用的NB上。因此,臭氧与腺嘌呤和胞嘧啶的反应明显按照二级动力学定律进行(一级动力学定律根据О3和一级动力学定律根据NB)。用积分反应方程计算了反应速率常数,其值表明臭氧对氮碱的反应活性较高。在285 ~ 309 K范围内研究了臭氧与腺嘌呤和胞嘧啶反应的二阶速率常数的温度依赖性,并测定了臭氧与腺嘌呤和胞嘧啶在水溶液中反应的指前因子和活化能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KINETICS OF OZONE REACTIONS WITH ADENINE AND CYTOSINE IN AQUEOUS SOLUTIONS
The ultraviolet spectroscopy method has been applied to study the kinetics of the ozone reactions with nitrogenous bases (NB), namely adenine and cytosine in aqueous solutions. At the first research stage, the range of NB working concentrations has been determined. It was found that linear dependences between optical densities and concentrations of nitrogenous bases aqueous solutions are quite reliable, with correlation coefficients r ≥ 0.998, are satisfied up to [NB] = 2.3 ∙ 10–4 mol/l. According to the Bouguer-Lambert-Beer law, adenine and cytosine extinction coefficients in aqueous solutions were determined and subsequently used to calculate their residual concentrations. At the next stage, the kinetics of nitrogenous bases ozonized oxidation was studied with equal initial concentrations of the starting substances ([NB]0 = [О3]0). The results revealed that the kinetic consumption curves of the starting reagents are fairly well linearized (r ≥ 0.996) in the second-order reaction equation coordinates. As found with the bubbling installation, 1 mol of the absorbed ozone falls on 1 mol of the used NB. Thus, the reactions of ozone with adenine and cytosine explicitly proceed according to the second-order kinetic laws (the first – according to О3 and the first – according to NB). The rate constants were calculated by the integral reaction equations, the values of which indicate a higher ozone reactivity in relation to nitrogen bases. The temperature dependences of the second-order rate constants was studied ranging 285-309 K, and the activation parameters (pre-exponential factors and activation energies) of the ozone reactions with adenine and cytosine in aqueous solutions were determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEPENDENCE OF THE ANTIOXIDANT PROPERTIES OF SOME SPATIALLY SUBSTITUTED PHENOLS ON THE CALCULATED PARAMETERS OF THE STRUCTURE OF ANTIOXIDANT MOLECULES THERMOGRAVIMETRIC AND KINETIC STUDY OF FUEL PELLETS FROM BIOMASS OF HERACLEUM SOSNOWSKYI MANDEN SYNTHESIS AND PROPERTIES OF NANOCELLULOSE-DYE CONJUGATES MODEL OF THE INTERMEDIATE CARBON PHASE BASED ON INTERSTITIAL DEFECTS IN GRAPHITE THEORETICAL AND EXPERIMENTAL STUDY OF THE ADSORPTION CAPACITY OF TRANSITION METAL ACETATES IN THE PROCESS OF DESULFURIZATION OF A MODEL HYDROCARBON FUEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1