{"title":"基于复杂组件的嵌入式系统的可扩展自治重构框架","authors":"Johannes Schlatow, Mischa Moestl, R. Ernst","doi":"10.1109/ICAC.2015.18","DOIUrl":null,"url":null,"abstract":"We present a framework based on constraint satisfaction that adds self-integration capabilities to component-based embedded systems by identifying correct compositions of the desired components and their dependencies. This not only allows autonomous integration of additional functionality but can also be extended to ensure that the new configuration does not violate any extra-functional requirements, such as safety or security, imposed by the application domain.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"125 38","pages":"239-242"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An Extensible Autonomous Reconfiguration Framework for Complex Component-Based Embedded Systems\",\"authors\":\"Johannes Schlatow, Mischa Moestl, R. Ernst\",\"doi\":\"10.1109/ICAC.2015.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework based on constraint satisfaction that adds self-integration capabilities to component-based embedded systems by identifying correct compositions of the desired components and their dependencies. This not only allows autonomous integration of additional functionality but can also be extended to ensure that the new configuration does not violate any extra-functional requirements, such as safety or security, imposed by the application domain.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"125 38\",\"pages\":\"239-242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Extensible Autonomous Reconfiguration Framework for Complex Component-Based Embedded Systems
We present a framework based on constraint satisfaction that adds self-integration capabilities to component-based embedded systems by identifying correct compositions of the desired components and their dependencies. This not only allows autonomous integration of additional functionality but can also be extended to ensure that the new configuration does not violate any extra-functional requirements, such as safety or security, imposed by the application domain.