Andrea Tryfonos, Matthew Cocks, Nicola Browning, Ellen Adele Dawson
{"title":"在健康年轻男性中,运动后内皮功能与细胞外囊泡释放无关。","authors":"Andrea Tryfonos, Matthew Cocks, Nicola Browning, Ellen Adele Dawson","doi":"10.1139/apnm-2022-0278","DOIUrl":null,"url":null,"abstract":"<p><p>Acute exercise can result in temporary decrease in endothelial functions, which may represent a transient period of risk. Numerous mechanisms underpinning these responses included release of extracellular vesicles (EVs) derived from apoptotic or activated endothelial cells and platelets. This study aims to compare the time course of endothelial responses to moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE) and the associations with EV release. Eighteen young healthy males (age: 22.6 ± 3.7 years, BMI: 25.6 ± 2.5 m<sup>2</sup>/kg, and VO<sub>2peak</sub>: 38.6 ± 6.5 mL/kg/min) completed two randomly assigned exercises: HIIE (10 × 1 min-@-90% heart rate reserve (HRR) and 1 min passive recovery) and MICE (30 min-@-70% HRR) on a cycle ergometer. Flow-mediated dilation (FMD) was used to assess endothelial function and blood samples were collected to evaluate endothelial cell-derived EV (CD62E<sup>+</sup>) and platelet-derived EV (CD41a<sup>+</sup>), 10, 60, and 120 min before and after exercise. There were similar increases but different time courses (<i>P</i> = 0.017) in FMD (increased 10 min post-HIIE, <i>P</i> < 0.0001 and 60 min post-MICE, <i>P</i> = 0.038). CD62E<sup>+</sup> remained unchanged (<i>P</i> = 0.530), whereas overall CD41a<sup>+</sup> release was reduced 60 min post-exercise (<i>P</i> = 0.040). FMD was not associated with EV absolute release or change (<i>P</i> > 0.05). Acute exercise resulted in similar improvements, but different time course in FMD following either exercise. Whilst EVs were not associated with FMD, the reduction in platelet-derived EVs may represent a protective mechanism following acute exercise.</p>","PeriodicalId":8116,"journal":{"name":"Applied Physiology, Nutrition, and Metabolism","volume":"48 2","pages":"209-218"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-exercise endothelial function is not associated with extracellular vesicle release in healthy young males.\",\"authors\":\"Andrea Tryfonos, Matthew Cocks, Nicola Browning, Ellen Adele Dawson\",\"doi\":\"10.1139/apnm-2022-0278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute exercise can result in temporary decrease in endothelial functions, which may represent a transient period of risk. Numerous mechanisms underpinning these responses included release of extracellular vesicles (EVs) derived from apoptotic or activated endothelial cells and platelets. This study aims to compare the time course of endothelial responses to moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE) and the associations with EV release. Eighteen young healthy males (age: 22.6 ± 3.7 years, BMI: 25.6 ± 2.5 m<sup>2</sup>/kg, and VO<sub>2peak</sub>: 38.6 ± 6.5 mL/kg/min) completed two randomly assigned exercises: HIIE (10 × 1 min-@-90% heart rate reserve (HRR) and 1 min passive recovery) and MICE (30 min-@-70% HRR) on a cycle ergometer. Flow-mediated dilation (FMD) was used to assess endothelial function and blood samples were collected to evaluate endothelial cell-derived EV (CD62E<sup>+</sup>) and platelet-derived EV (CD41a<sup>+</sup>), 10, 60, and 120 min before and after exercise. There were similar increases but different time courses (<i>P</i> = 0.017) in FMD (increased 10 min post-HIIE, <i>P</i> < 0.0001 and 60 min post-MICE, <i>P</i> = 0.038). CD62E<sup>+</sup> remained unchanged (<i>P</i> = 0.530), whereas overall CD41a<sup>+</sup> release was reduced 60 min post-exercise (<i>P</i> = 0.040). FMD was not associated with EV absolute release or change (<i>P</i> > 0.05). Acute exercise resulted in similar improvements, but different time course in FMD following either exercise. Whilst EVs were not associated with FMD, the reduction in platelet-derived EVs may represent a protective mechanism following acute exercise.</p>\",\"PeriodicalId\":8116,\"journal\":{\"name\":\"Applied Physiology, Nutrition, and Metabolism\",\"volume\":\"48 2\",\"pages\":\"209-218\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physiology, Nutrition, and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1139/apnm-2022-0278\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physiology, Nutrition, and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/apnm-2022-0278","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Post-exercise endothelial function is not associated with extracellular vesicle release in healthy young males.
Acute exercise can result in temporary decrease in endothelial functions, which may represent a transient period of risk. Numerous mechanisms underpinning these responses included release of extracellular vesicles (EVs) derived from apoptotic or activated endothelial cells and platelets. This study aims to compare the time course of endothelial responses to moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE) and the associations with EV release. Eighteen young healthy males (age: 22.6 ± 3.7 years, BMI: 25.6 ± 2.5 m2/kg, and VO2peak: 38.6 ± 6.5 mL/kg/min) completed two randomly assigned exercises: HIIE (10 × 1 min-@-90% heart rate reserve (HRR) and 1 min passive recovery) and MICE (30 min-@-70% HRR) on a cycle ergometer. Flow-mediated dilation (FMD) was used to assess endothelial function and blood samples were collected to evaluate endothelial cell-derived EV (CD62E+) and platelet-derived EV (CD41a+), 10, 60, and 120 min before and after exercise. There were similar increases but different time courses (P = 0.017) in FMD (increased 10 min post-HIIE, P < 0.0001 and 60 min post-MICE, P = 0.038). CD62E+ remained unchanged (P = 0.530), whereas overall CD41a+ release was reduced 60 min post-exercise (P = 0.040). FMD was not associated with EV absolute release or change (P > 0.05). Acute exercise resulted in similar improvements, but different time course in FMD following either exercise. Whilst EVs were not associated with FMD, the reduction in platelet-derived EVs may represent a protective mechanism following acute exercise.
期刊介绍:
Applied Physiology, Nutrition, and Metabolism publishes original research articles, reviews, and commentaries, focussing on the application of physiology, nutrition, and metabolism to the study of human health, physical activity, and fitness. The published research, reviews, and symposia will be of interest to exercise physiologists, physical fitness and exercise rehabilitation specialists, public health and health care professionals, as well as basic and applied physiologists, nutritionists, and biochemists.