{"title":"软焊缝构件抗压强度(力学、强度与结构设计)","authors":"Y. Ueda, H. Murakawa, H. Kimura","doi":"10.1080/09507119009447771","DOIUrl":null,"url":null,"abstract":"Soft weld joints or under matching weld joints are often employed in the welding of high tensile strength steel to avoid crackings. The compressive strength of structural members, such as columns, plates and pipes, with soft weld joints is analyzed by Finite Element Method and simple mechanical models. Especially, the effects of the width and the location of the soft joint, slenderness ratio, initial deflection and the strain hardening are clarified.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"140 7","pages":"177-187"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compressive Strength of Structural Members with Soft Weld Joints(Mechanics, Strength & Structural Design)\",\"authors\":\"Y. Ueda, H. Murakawa, H. Kimura\",\"doi\":\"10.1080/09507119009447771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft weld joints or under matching weld joints are often employed in the welding of high tensile strength steel to avoid crackings. The compressive strength of structural members, such as columns, plates and pipes, with soft weld joints is analyzed by Finite Element Method and simple mechanical models. Especially, the effects of the width and the location of the soft joint, slenderness ratio, initial deflection and the strain hardening are clarified.\",\"PeriodicalId\":23197,\"journal\":{\"name\":\"Transactions of JWRI\",\"volume\":\"140 7\",\"pages\":\"177-187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of JWRI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09507119009447771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of JWRI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507119009447771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressive Strength of Structural Members with Soft Weld Joints(Mechanics, Strength & Structural Design)
Soft weld joints or under matching weld joints are often employed in the welding of high tensile strength steel to avoid crackings. The compressive strength of structural members, such as columns, plates and pipes, with soft weld joints is analyzed by Finite Element Method and simple mechanical models. Especially, the effects of the width and the location of the soft joint, slenderness ratio, initial deflection and the strain hardening are clarified.