联盟区块链中基于分段pagerank的个人数据价值补偿方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-11-28 DOI:10.1016/j.bdr.2022.100326
Chaoxia Qin , Bing Guo , Yun Zhang , Omar Cheikhrouhou , Yan Shen , Zhen Zhang , Hong Su
{"title":"联盟区块链中基于分段pagerank的个人数据价值补偿方法","authors":"Chaoxia Qin ,&nbsp;Bing Guo ,&nbsp;Yun Zhang ,&nbsp;Omar Cheikhrouhou ,&nbsp;Yan Shen ,&nbsp;Zhen Zhang ,&nbsp;Hong Su","doi":"10.1016/j.bdr.2022.100326","DOIUrl":null,"url":null,"abstract":"<div><p><span>Alliance blockchains<span><span> provide a multi-party trusted data trading environment, promoting the development of the data trading market in which the value compensation for personal data is still a key issue. However, limited by the data format and content, traditional attempts on data value compensation cannot form a widely applicable solution. Therefore, we propose a universal value compensation method for personal data in alliance blockchains. The basic idea of this method is to evaluate the value weight of data based on the </span>collaborative relationship of data value. First, we construct a Data Collaboration Markov Model (DCMM) to formalize the collaboration network of data value. Then, aiming at data collaboration networks with different structures, the corresponding Segmented PageRank (SPR) algorithm is proposed. SPR can universally evaluate the value weight of each data account without being subjected to the data format or content. Finally, we theoretically deduce that the time complexity and space complexity of SPR algorithm are respectively </span></span><span><math><mn>1</mn><mo>/</mo><mi>K</mi></math></span> and <span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span> taken by PageRank algorithm. Experiments show the feasibility and superior performance of SPR.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Segmented PageRank-Based Value Compensation Method for Personal Data in Alliance Blockchains\",\"authors\":\"Chaoxia Qin ,&nbsp;Bing Guo ,&nbsp;Yun Zhang ,&nbsp;Omar Cheikhrouhou ,&nbsp;Yan Shen ,&nbsp;Zhen Zhang ,&nbsp;Hong Su\",\"doi\":\"10.1016/j.bdr.2022.100326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Alliance blockchains<span><span> provide a multi-party trusted data trading environment, promoting the development of the data trading market in which the value compensation for personal data is still a key issue. However, limited by the data format and content, traditional attempts on data value compensation cannot form a widely applicable solution. Therefore, we propose a universal value compensation method for personal data in alliance blockchains. The basic idea of this method is to evaluate the value weight of data based on the </span>collaborative relationship of data value. First, we construct a Data Collaboration Markov Model (DCMM) to formalize the collaboration network of data value. Then, aiming at data collaboration networks with different structures, the corresponding Segmented PageRank (SPR) algorithm is proposed. SPR can universally evaluate the value weight of each data account without being subjected to the data format or content. Finally, we theoretically deduce that the time complexity and space complexity of SPR algorithm are respectively </span></span><span><math><mn>1</mn><mo>/</mo><mi>K</mi></math></span> and <span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span> taken by PageRank algorithm. Experiments show the feasibility and superior performance of SPR.</span></p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221457962200020X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221457962200020X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

联盟区块链提供了多方可信的数据交易环境,促进了个人数据价值补偿仍是关键问题的数据交易市场的发展。然而,由于数据格式和内容的限制,传统的数据价值补偿尝试无法形成一种广泛适用的解决方案。因此,我们提出了一种联盟区块链中个人数据的通用价值补偿方法。该方法的基本思想是基于数据价值的协同关系来评估数据的价值权重。首先,构建数据协作马尔可夫模型(DCMM)来形式化数据价值的协作网络。然后,针对不同结构的数据协作网络,提出了相应的分段PageRank (SPR)算法。SPR可以在不受数据格式和内容限制的情况下,统一评价每个数据账户的价值权重。最后,我们从理论上推导出SPR算法的时间复杂度和空间复杂度分别为PageRank算法的1/K和1/K2。实验证明了SPR的可行性和优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Segmented PageRank-Based Value Compensation Method for Personal Data in Alliance Blockchains

Alliance blockchains provide a multi-party trusted data trading environment, promoting the development of the data trading market in which the value compensation for personal data is still a key issue. However, limited by the data format and content, traditional attempts on data value compensation cannot form a widely applicable solution. Therefore, we propose a universal value compensation method for personal data in alliance blockchains. The basic idea of this method is to evaluate the value weight of data based on the collaborative relationship of data value. First, we construct a Data Collaboration Markov Model (DCMM) to formalize the collaboration network of data value. Then, aiming at data collaboration networks with different structures, the corresponding Segmented PageRank (SPR) algorithm is proposed. SPR can universally evaluate the value weight of each data account without being subjected to the data format or content. Finally, we theoretically deduce that the time complexity and space complexity of SPR algorithm are respectively 1/K and 1/K2 taken by PageRank algorithm. Experiments show the feasibility and superior performance of SPR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1