{"title":"重症患者亚胺培南的群体药代动力学和剂量优化。","authors":"Jing Bai, Aiping Wen, Zhe Li, Xingang Li, Meili Duan","doi":"10.1136/ejhpharm-2022-003403","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study was to explore factors that affect the clearance of imipenem in critically ill patients and to provide a dosing regimen for such patients.</p><p><strong>Methods: </strong>A prospective open-label study enrolled 51 critically ill patients with sepsis. Patients were between the ages of 18 and 96. Blood samples were collected in duplicate before (0 hour) and at 0.5, 1, 1.5, 2, 3, 4, 6, and 8 hours after imipenem administration. The plasma imipenem concentration was determined by the high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method. A population pharmacokinetic (PPK) model was developed using nonlinear mixed-effects modelling methods to identify covariates. Monte Carlo simulations were performed using the final PPK model to explore the effect of different dosing regimens on the probability of target attainment (PTA).</p><p><strong>Results: </strong>The imipenem concentration data were best described by a two-compartment model. Creatinine clearance (CrCl, mL/min) was a covariate that affected central clearance (CLc). Patients were divided into four subgroups based on different CrCl rates. Monte Carlo simulations were performed to assess the PTA differences between empirical dosing regimens (0.5 g every 6 hours (q6h), 0.5 g every 8 hours (q8h), 0.5 g every 12 hours (q12h), 1 g every 6 hours (q6h), 1 g every 8 hours (q8h), and 1 g every 12 hours (q12h)) and to determine the target achievement rate covariate.</p><p><strong>Conclusion: </strong>This study identified covariates for CLc, and the proposed final model can be used to guide clinicians administering imipenem in this particular patient population.</p>","PeriodicalId":12050,"journal":{"name":"European journal of hospital pharmacy : science and practice","volume":" ","pages":"434-439"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347199/pdf/","citationCount":"0","resultStr":"{\"title\":\"Population pharmacokinetics and dosing optimisation of imipenem in critically ill patients.\",\"authors\":\"Jing Bai, Aiping Wen, Zhe Li, Xingang Li, Meili Duan\",\"doi\":\"10.1136/ejhpharm-2022-003403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The objective of this study was to explore factors that affect the clearance of imipenem in critically ill patients and to provide a dosing regimen for such patients.</p><p><strong>Methods: </strong>A prospective open-label study enrolled 51 critically ill patients with sepsis. Patients were between the ages of 18 and 96. Blood samples were collected in duplicate before (0 hour) and at 0.5, 1, 1.5, 2, 3, 4, 6, and 8 hours after imipenem administration. The plasma imipenem concentration was determined by the high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method. A population pharmacokinetic (PPK) model was developed using nonlinear mixed-effects modelling methods to identify covariates. Monte Carlo simulations were performed using the final PPK model to explore the effect of different dosing regimens on the probability of target attainment (PTA).</p><p><strong>Results: </strong>The imipenem concentration data were best described by a two-compartment model. Creatinine clearance (CrCl, mL/min) was a covariate that affected central clearance (CLc). Patients were divided into four subgroups based on different CrCl rates. Monte Carlo simulations were performed to assess the PTA differences between empirical dosing regimens (0.5 g every 6 hours (q6h), 0.5 g every 8 hours (q8h), 0.5 g every 12 hours (q12h), 1 g every 6 hours (q6h), 1 g every 8 hours (q8h), and 1 g every 12 hours (q12h)) and to determine the target achievement rate covariate.</p><p><strong>Conclusion: </strong>This study identified covariates for CLc, and the proposed final model can be used to guide clinicians administering imipenem in this particular patient population.</p>\",\"PeriodicalId\":12050,\"journal\":{\"name\":\"European journal of hospital pharmacy : science and practice\",\"volume\":\" \",\"pages\":\"434-439\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347199/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of hospital pharmacy : science and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/ejhpharm-2022-003403\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of hospital pharmacy : science and practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/ejhpharm-2022-003403","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Population pharmacokinetics and dosing optimisation of imipenem in critically ill patients.
Objective: The objective of this study was to explore factors that affect the clearance of imipenem in critically ill patients and to provide a dosing regimen for such patients.
Methods: A prospective open-label study enrolled 51 critically ill patients with sepsis. Patients were between the ages of 18 and 96. Blood samples were collected in duplicate before (0 hour) and at 0.5, 1, 1.5, 2, 3, 4, 6, and 8 hours after imipenem administration. The plasma imipenem concentration was determined by the high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method. A population pharmacokinetic (PPK) model was developed using nonlinear mixed-effects modelling methods to identify covariates. Monte Carlo simulations were performed using the final PPK model to explore the effect of different dosing regimens on the probability of target attainment (PTA).
Results: The imipenem concentration data were best described by a two-compartment model. Creatinine clearance (CrCl, mL/min) was a covariate that affected central clearance (CLc). Patients were divided into four subgroups based on different CrCl rates. Monte Carlo simulations were performed to assess the PTA differences between empirical dosing regimens (0.5 g every 6 hours (q6h), 0.5 g every 8 hours (q8h), 0.5 g every 12 hours (q12h), 1 g every 6 hours (q6h), 1 g every 8 hours (q8h), and 1 g every 12 hours (q12h)) and to determine the target achievement rate covariate.
Conclusion: This study identified covariates for CLc, and the proposed final model can be used to guide clinicians administering imipenem in this particular patient population.
期刊介绍:
European Journal of Hospital Pharmacy (EJHP) offers a high quality, peer-reviewed platform for the publication of practical and innovative research which aims to strengthen the profile and professional status of hospital pharmacists. EJHP is committed to being the leading journal on all aspects of hospital pharmacy, thereby advancing the science, practice and profession of hospital pharmacy. The journal aims to become a major source for education and inspiration to improve practice and the standard of patient care in hospitals and related institutions worldwide.
EJHP is the only official journal of the European Association of Hospital Pharmacists.