{"title":"制药和生物技术应用的膜工艺","authors":"C. Charcosset","doi":"10.1016/j.rbmret.2005.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes such as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems are taking advantages of their selectivity, high surface area per unit volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications. Ultrafiltration and microfiltration are well-known membrane separation processes, used i.e. for solvent removal, virus filtration, and antibiotics production. Membrane bioreactors are alternative approaches to classical methods of immobilizing biocatalysts, i.e. for the production of aminoacids, antibiotics, and anti-inflammatories. Chromatographic membranes may replace advantageously conventional resin-based chromatography columns, having the benefit of the absence of the long diffusion times that often occur in resin-based chromatography. Finally, membrane contactors involve using a pressure to force a dispersed phase to permeate through a membrane into a continuous phase, for the preparation of emulsions and various types of particles.</p></div>","PeriodicalId":100733,"journal":{"name":"ITBM-RBM","volume":"27 1","pages":"Pages 1-7"},"PeriodicalIF":0.0000,"publicationDate":"2006-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rbmret.2005.10.003","citationCount":"5","resultStr":"{\"title\":\"Procédés membranaires à application pharmaceutique et biotechnologique\",\"authors\":\"C. Charcosset\",\"doi\":\"10.1016/j.rbmret.2005.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes such as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems are taking advantages of their selectivity, high surface area per unit volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications. Ultrafiltration and microfiltration are well-known membrane separation processes, used i.e. for solvent removal, virus filtration, and antibiotics production. Membrane bioreactors are alternative approaches to classical methods of immobilizing biocatalysts, i.e. for the production of aminoacids, antibiotics, and anti-inflammatories. Chromatographic membranes may replace advantageously conventional resin-based chromatography columns, having the benefit of the absence of the long diffusion times that often occur in resin-based chromatography. Finally, membrane contactors involve using a pressure to force a dispersed phase to permeate through a membrane into a continuous phase, for the preparation of emulsions and various types of particles.</p></div>\",\"PeriodicalId\":100733,\"journal\":{\"name\":\"ITBM-RBM\",\"volume\":\"27 1\",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rbmret.2005.10.003\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITBM-RBM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1297956205001245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITBM-RBM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1297956205001245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Procédés membranaires à application pharmaceutique et biotechnologique
Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes such as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems are taking advantages of their selectivity, high surface area per unit volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications. Ultrafiltration and microfiltration are well-known membrane separation processes, used i.e. for solvent removal, virus filtration, and antibiotics production. Membrane bioreactors are alternative approaches to classical methods of immobilizing biocatalysts, i.e. for the production of aminoacids, antibiotics, and anti-inflammatories. Chromatographic membranes may replace advantageously conventional resin-based chromatography columns, having the benefit of the absence of the long diffusion times that often occur in resin-based chromatography. Finally, membrane contactors involve using a pressure to force a dispersed phase to permeate through a membrane into a continuous phase, for the preparation of emulsions and various types of particles.