对社交网络上不可靠账户的实用检测

Q1 Social Sciences Online Social Networks and Media Pub Date : 2021-07-01 DOI:10.1016/j.osnem.2021.100152
Nuno Guimarães , Álvaro Figueira , Luís Torgo
{"title":"对社交网络上不可靠账户的实用检测","authors":"Nuno Guimarães ,&nbsp;Álvaro Figueira ,&nbsp;Luís Torgo","doi":"10.1016/j.osnem.2021.100152","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the problem of unreliable content in social networks has become a major threat, with a proven real-world impact in events like elections and pandemics, undermining democracy and trust in science, respectively. Research in this domain has focused not only on the content but also on the accounts that propagate it, with the bot detection task having been thoroughly studied. However, not all bot accounts work as unreliable content spreaders (p.e. bot for news aggregation), and not all human accounts are necessarily reliable. In this study, we try to distinguish unreliable from reliable accounts, independently of how they are operated. In addition, we work towards providing a methodology capable of coping with real-world situations by introducing the content available (restricting it by volume- and time-based batches) as a parameter of the methodology. Experiments conducted on a validation set with a different number of tweets per account provide evidence that our proposed solution produces an increase of up to 20% in performance when compared with traditional (individual) models and with cross-batch models (which perform better with different batches of tweets).</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osnem.2021.100152","citationCount":"1","resultStr":"{\"title\":\"Towards a pragmatic detection of unreliable accounts on social networks\",\"authors\":\"Nuno Guimarães ,&nbsp;Álvaro Figueira ,&nbsp;Luís Torgo\",\"doi\":\"10.1016/j.osnem.2021.100152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the problem of unreliable content in social networks has become a major threat, with a proven real-world impact in events like elections and pandemics, undermining democracy and trust in science, respectively. Research in this domain has focused not only on the content but also on the accounts that propagate it, with the bot detection task having been thoroughly studied. However, not all bot accounts work as unreliable content spreaders (p.e. bot for news aggregation), and not all human accounts are necessarily reliable. In this study, we try to distinguish unreliable from reliable accounts, independently of how they are operated. In addition, we work towards providing a methodology capable of coping with real-world situations by introducing the content available (restricting it by volume- and time-based batches) as a parameter of the methodology. Experiments conducted on a validation set with a different number of tweets per account provide evidence that our proposed solution produces an increase of up to 20% in performance when compared with traditional (individual) models and with cross-batch models (which perform better with different batches of tweets).</p></div>\",\"PeriodicalId\":52228,\"journal\":{\"name\":\"Online Social Networks and Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.osnem.2021.100152\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Social Networks and Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468696421000343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696421000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

近年来,社交网络中不可靠的内容问题已成为一个主要威胁,在选举和流行病等事件中产生了现实世界的影响,分别破坏了民主和对科学的信任。该领域的研究不仅关注内容,还关注传播内容的账户,对机器人检测任务进行了深入研究。然而,并不是所有的机器人账号都是不可靠的内容传播者(比如新闻聚合的机器人),也不是所有的人类账号都是可靠的。在这项研究中,我们试图区分可靠和不可靠的账户,而不管它们是如何运作的。此外,我们致力于通过引入可用内容(通过基于数量和时间的批次进行限制)作为方法的参数,提供一种能够应对现实世界情况的方法。在每个帐户有不同数量推文的验证集上进行的实验证明,与传统(单个)模型和跨批模型(处理不同批次的推文时性能更好)相比,我们提出的解决方案的性能提高了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a pragmatic detection of unreliable accounts on social networks

In recent years, the problem of unreliable content in social networks has become a major threat, with a proven real-world impact in events like elections and pandemics, undermining democracy and trust in science, respectively. Research in this domain has focused not only on the content but also on the accounts that propagate it, with the bot detection task having been thoroughly studied. However, not all bot accounts work as unreliable content spreaders (p.e. bot for news aggregation), and not all human accounts are necessarily reliable. In this study, we try to distinguish unreliable from reliable accounts, independently of how they are operated. In addition, we work towards providing a methodology capable of coping with real-world situations by introducing the content available (restricting it by volume- and time-based batches) as a parameter of the methodology. Experiments conducted on a validation set with a different number of tweets per account provide evidence that our proposed solution produces an increase of up to 20% in performance when compared with traditional (individual) models and with cross-batch models (which perform better with different batches of tweets).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1