{"title":"一种新型生物活性玻璃/氧化石墨烯复合涂层用于聚醚醚酮基牙科种植体","authors":"Ahmed Al-Noaman, Simon Charles Fielding Rawlinson","doi":"10.1111/eos.12915","DOIUrl":null,"url":null,"abstract":"<p>Polyether ether ketone (PEEK) is a biocompatible material that lacks antimicrobial activity and bioactivity; therefore, is not appropriate for use as a dental implant. To overcome these deficiencies, a novel composite coating of bioactive glass and graphene oxide was prepared. PEEK discs were polished, cleaned, and the surface treated with sulfuric acid for 15 min. The composite coating consisted of bioactive glass produced by the sol-gel route and doped with 0.75 wt% graphene oxide. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy dispersive spectroscopy analyses were employed to characterize the composite coating, and the coating adhesion strength quantified using a pull-off test. Cytotoxicity was assessed using osteoblast-like cells and gingival fibroblasts. The wettability of the coated and non-coated samples was determined by optical contact angle assessment, and bioactivity was assessed by immersion in simulated body fluid. The results revealed that the bioactive glass/graphene oxide composite coating, approximately 7 μm thick, was transparent, homogenous with few microcracks and microporosities, but adhered strongly and was not cytotoxic to either osteoblast-like cells or gingival fibroblasts. The wettability of the PEEK sample was increased to <20° after coating with the composite, and apatite formation was detectable after 14 days of immersion in simulated body fluid.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"131 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A novel bioactive glass/graphene oxide composite coating for a polyether ether ketone-based dental implant\",\"authors\":\"Ahmed Al-Noaman, Simon Charles Fielding Rawlinson\",\"doi\":\"10.1111/eos.12915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polyether ether ketone (PEEK) is a biocompatible material that lacks antimicrobial activity and bioactivity; therefore, is not appropriate for use as a dental implant. To overcome these deficiencies, a novel composite coating of bioactive glass and graphene oxide was prepared. PEEK discs were polished, cleaned, and the surface treated with sulfuric acid for 15 min. The composite coating consisted of bioactive glass produced by the sol-gel route and doped with 0.75 wt% graphene oxide. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy dispersive spectroscopy analyses were employed to characterize the composite coating, and the coating adhesion strength quantified using a pull-off test. Cytotoxicity was assessed using osteoblast-like cells and gingival fibroblasts. The wettability of the coated and non-coated samples was determined by optical contact angle assessment, and bioactivity was assessed by immersion in simulated body fluid. The results revealed that the bioactive glass/graphene oxide composite coating, approximately 7 μm thick, was transparent, homogenous with few microcracks and microporosities, but adhered strongly and was not cytotoxic to either osteoblast-like cells or gingival fibroblasts. The wettability of the PEEK sample was increased to <20° after coating with the composite, and apatite formation was detectable after 14 days of immersion in simulated body fluid.</p>\",\"PeriodicalId\":11983,\"journal\":{\"name\":\"European Journal of Oral Sciences\",\"volume\":\"131 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Oral Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eos.12915\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12915","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
A novel bioactive glass/graphene oxide composite coating for a polyether ether ketone-based dental implant
Polyether ether ketone (PEEK) is a biocompatible material that lacks antimicrobial activity and bioactivity; therefore, is not appropriate for use as a dental implant. To overcome these deficiencies, a novel composite coating of bioactive glass and graphene oxide was prepared. PEEK discs were polished, cleaned, and the surface treated with sulfuric acid for 15 min. The composite coating consisted of bioactive glass produced by the sol-gel route and doped with 0.75 wt% graphene oxide. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy dispersive spectroscopy analyses were employed to characterize the composite coating, and the coating adhesion strength quantified using a pull-off test. Cytotoxicity was assessed using osteoblast-like cells and gingival fibroblasts. The wettability of the coated and non-coated samples was determined by optical contact angle assessment, and bioactivity was assessed by immersion in simulated body fluid. The results revealed that the bioactive glass/graphene oxide composite coating, approximately 7 μm thick, was transparent, homogenous with few microcracks and microporosities, but adhered strongly and was not cytotoxic to either osteoblast-like cells or gingival fibroblasts. The wettability of the PEEK sample was increased to <20° after coating with the composite, and apatite formation was detectable after 14 days of immersion in simulated body fluid.
期刊介绍:
The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication.
The journal is published bimonthly.