Katrin Utai , Marcus Nagle , Simone Hämmerle , Wolfram Spreer , Busarakorn Mahayothee , Joachim Müller
{"title":"芒果果实(Mangifera indica L., cv.)的质量估计。将图像处理和人工神经网络相结合的“南Dokmai”","authors":"Katrin Utai , Marcus Nagle , Simone Hämmerle , Wolfram Spreer , Busarakorn Mahayothee , Joachim Müller","doi":"10.1016/j.eaef.2018.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Computer-aided estimation of mass for irregularly-shaped fruits is a constructive advancement towards improved post-harvest technologies. In image processing of unsymmetrical and varying samples, object recognition and feature extraction are challenging tasks. This paper presents a developed algorithms that transform images of the mango cultivar ‘Nam Dokmai to simplify subsequent object recognition tasks, and extracted features, like length, width, thickness, and area further used as inputs in an artificial neural network (ANN) model to estimate the fruit mass. Seven different approaches are presented and discussed in this paper explaining the application of specific algorithms to obtain the fruit dimensions and to estimate the fruit mass. The performances of the different image processing approaches were evaluated. Overall, it can be stated that all the treatments gave satisfactory results with highest success rates of 97% and highest coefficient of efficiencies of 0.99 using two input parameters (area and thickness) or three input parameters (length, width, and thickness).</p></div>","PeriodicalId":38965,"journal":{"name":"Engineering in Agriculture, Environment and Food","volume":"12 1","pages":"Pages 103-110"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eaef.2018.10.003","citationCount":"25","resultStr":"{\"title\":\"Mass estimation of mango fruits (Mangifera indica L., cv. ‘Nam Dokmai’) by linking image processing and artificial neural network\",\"authors\":\"Katrin Utai , Marcus Nagle , Simone Hämmerle , Wolfram Spreer , Busarakorn Mahayothee , Joachim Müller\",\"doi\":\"10.1016/j.eaef.2018.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computer-aided estimation of mass for irregularly-shaped fruits is a constructive advancement towards improved post-harvest technologies. In image processing of unsymmetrical and varying samples, object recognition and feature extraction are challenging tasks. This paper presents a developed algorithms that transform images of the mango cultivar ‘Nam Dokmai to simplify subsequent object recognition tasks, and extracted features, like length, width, thickness, and area further used as inputs in an artificial neural network (ANN) model to estimate the fruit mass. Seven different approaches are presented and discussed in this paper explaining the application of specific algorithms to obtain the fruit dimensions and to estimate the fruit mass. The performances of the different image processing approaches were evaluated. Overall, it can be stated that all the treatments gave satisfactory results with highest success rates of 97% and highest coefficient of efficiencies of 0.99 using two input parameters (area and thickness) or three input parameters (length, width, and thickness).</p></div>\",\"PeriodicalId\":38965,\"journal\":{\"name\":\"Engineering in Agriculture, Environment and Food\",\"volume\":\"12 1\",\"pages\":\"Pages 103-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.eaef.2018.10.003\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Agriculture, Environment and Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S188183661730143X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Agriculture, Environment and Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S188183661730143X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Mass estimation of mango fruits (Mangifera indica L., cv. ‘Nam Dokmai’) by linking image processing and artificial neural network
Computer-aided estimation of mass for irregularly-shaped fruits is a constructive advancement towards improved post-harvest technologies. In image processing of unsymmetrical and varying samples, object recognition and feature extraction are challenging tasks. This paper presents a developed algorithms that transform images of the mango cultivar ‘Nam Dokmai to simplify subsequent object recognition tasks, and extracted features, like length, width, thickness, and area further used as inputs in an artificial neural network (ANN) model to estimate the fruit mass. Seven different approaches are presented and discussed in this paper explaining the application of specific algorithms to obtain the fruit dimensions and to estimate the fruit mass. The performances of the different image processing approaches were evaluated. Overall, it can be stated that all the treatments gave satisfactory results with highest success rates of 97% and highest coefficient of efficiencies of 0.99 using two input parameters (area and thickness) or three input parameters (length, width, and thickness).
期刊介绍:
Engineering in Agriculture, Environment and Food (EAEF) is devoted to the advancement and dissemination of scientific and technical knowledge concerning agricultural machinery, tillage, terramechanics, precision farming, agricultural instrumentation, sensors, bio-robotics, systems automation, processing of agricultural products and foods, quality evaluation and food safety, waste treatment and management, environmental control, energy utilization agricultural systems engineering, bio-informatics, computer simulation, computational mechanics, farm work systems and mechanized cropping. It is an international English E-journal published and distributed by the Asian Agricultural and Biological Engineering Association (AABEA). Authors should submit the manuscript file written by MS Word through a web site. The manuscript must be approved by the author''s organization prior to submission if required. Contact the societies which you belong to, if you have any question on manuscript submission or on the Journal EAEF.