传染风险:在全球出口网络中的应用

E. Vicente, A. Mateos, E. Mateos
{"title":"传染风险:在全球出口网络中的应用","authors":"E. Vicente,&nbsp;A. Mateos,&nbsp;E. Mateos","doi":"10.1016/j.jcmds.2021.100010","DOIUrl":null,"url":null,"abstract":"<div><p>In many systems, the state of each of their components can itself be a source of risk affecting the other components, and it is not easy to aggregate these individual values together with the interconnecting structural elements of the network. There are simulation models in the literature that establish propagation curves for the population as a whole, especially in the epidemiological case, but these models do not provide a clear analytical expression of the risk borne by each of the network nodes. Moreover, classical models, such as the generalized cascade model, are not necessarily convergent. Neither can the individual values of each node be aggregated on the same scale as they were measured. This paper proposes a mathematical model that makes it possible to analyze the propagation of risk in the face of a given adverse event that may reach all the elements of a network and precisely calculate the risk borne by each node according to its own vulnerability and the relationships with the other nodes, which may be more or less vulnerable and constitute additional sources of risk. It is shown that the new model ensures convergence and that the aggregated results can be interpreted in terms of the risk measurement scale previously given for each node. In addition, the global import–export network is used to illustrate how political or economic instability in one state can generate crises in other states.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"1 ","pages":"Article 100010"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415821000055/pdfft?md5=82f3893819e0ad2c6abff625b636d520&pid=1-s2.0-S2772415821000055-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Contagion-induced risk: An application to the global export network\",\"authors\":\"E. Vicente,&nbsp;A. Mateos,&nbsp;E. Mateos\",\"doi\":\"10.1016/j.jcmds.2021.100010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In many systems, the state of each of their components can itself be a source of risk affecting the other components, and it is not easy to aggregate these individual values together with the interconnecting structural elements of the network. There are simulation models in the literature that establish propagation curves for the population as a whole, especially in the epidemiological case, but these models do not provide a clear analytical expression of the risk borne by each of the network nodes. Moreover, classical models, such as the generalized cascade model, are not necessarily convergent. Neither can the individual values of each node be aggregated on the same scale as they were measured. This paper proposes a mathematical model that makes it possible to analyze the propagation of risk in the face of a given adverse event that may reach all the elements of a network and precisely calculate the risk borne by each node according to its own vulnerability and the relationships with the other nodes, which may be more or less vulnerable and constitute additional sources of risk. It is shown that the new model ensures convergence and that the aggregated results can be interpreted in terms of the risk measurement scale previously given for each node. In addition, the global import–export network is used to illustrate how political or economic instability in one state can generate crises in other states.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"1 \",\"pages\":\"Article 100010\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415821000055/pdfft?md5=82f3893819e0ad2c6abff625b636d520&pid=1-s2.0-S2772415821000055-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415821000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415821000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多系统中,每个组件的状态本身可能是影响其他组件的风险来源,并且不容易将这些单独的值与网络的互连结构元素聚集在一起。文献中有一些模拟模型,建立了整体人群的传播曲线,特别是在流行病学案例中,但这些模型并没有对每个网络节点所承担的风险提供清晰的分析表达。此外,经典模型,如广义级联模型,并不一定是收敛的。也不能将每个节点的单个值聚合在与测量值相同的尺度上。本文提出了一个数学模型,该模型可以分析给定的可能到达网络所有元素的不利事件时风险的传播,并根据其自身的脆弱性以及与其他节点之间的关系精确计算每个节点所承担的风险,这些节点可能是或多或少的脆弱性,并构成额外的风险来源。结果表明,该模型具有较好的收敛性,并且可以用预先给出的每个节点的风险度量尺度来解释汇总结果。此外,全球进出口网络被用来说明一个国家的政治或经济不稳定如何在其他国家产生危机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contagion-induced risk: An application to the global export network

In many systems, the state of each of their components can itself be a source of risk affecting the other components, and it is not easy to aggregate these individual values together with the interconnecting structural elements of the network. There are simulation models in the literature that establish propagation curves for the population as a whole, especially in the epidemiological case, but these models do not provide a clear analytical expression of the risk borne by each of the network nodes. Moreover, classical models, such as the generalized cascade model, are not necessarily convergent. Neither can the individual values of each node be aggregated on the same scale as they were measured. This paper proposes a mathematical model that makes it possible to analyze the propagation of risk in the face of a given adverse event that may reach all the elements of a network and precisely calculate the risk borne by each node according to its own vulnerability and the relationships with the other nodes, which may be more or less vulnerable and constitute additional sources of risk. It is shown that the new model ensures convergence and that the aggregated results can be interpreted in terms of the risk measurement scale previously given for each node. In addition, the global import–export network is used to illustrate how political or economic instability in one state can generate crises in other states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1