Kun Yang , Peng Sun , Dingkang Yang , Jieyu Lin , Azzedine Boukerche , Liang Song
{"title":"一种支持智能驾驶的新型分层分布式车辆边缘计算框架","authors":"Kun Yang , Peng Sun , Dingkang Yang , Jieyu Lin , Azzedine Boukerche , Liang Song","doi":"10.1016/j.adhoc.2023.103343","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, various infrastructure-assisted or onboard driving assistant applications have been proposed as a component of intelligent transportation systems (ITS) to improve the transportation system’s efficiency and release public concern about road safety. However, such AI-assisted intelligent applications are mainly data-driven and put great demands on the computing power of the ITS systems. Therefore, in the highly dynamic Internet-of-Vehicles environment in ITS, how to effectively coordinate the limited computing power of the various components of the system and realize reliable support for such resource-consuming applications through efficient resource allocation methods is the focus of our research. Accordingly, a novel joint computing and communication resource scheduling method is proposed to fulfill those ITS applications’ inherent heterogeneous quality of service (QoS) requirements. By fully exploiting the computing resources provided by the onboard computing device, the edge computing device located in the vehicle’s proximity and remote data center, we designed a hierarchical three-layer Vehicular Edge Computing (VEC) framework. Briefly, an onboard joint computation offloading and transmission scheduling policy is designed to assign corresponding offloading decisions to the locally generated computing tasks by considering the vehicle’s computing resources and real-time network link status. Additionally, a new distributed resource allocation policy is developed for the edge devices, in which we derive a server selection policy and allocate communication time based on our proposed metric. To evaluate the performance and validate the effectiveness of our proposed method, we conduct extensive simulation tests and ablation experiments, respectively. The results show that our approach can achieve stable performance in various experimental settings. Also, compared to the state-of-the-art algorithms, our joint resource allocation policy significantly reduces the scheduling overhead, improves the utilization of system resources, and minimizes the data transmission delay caused by vehicle motion.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hierarchical distributed vehicular edge computing framework for supporting intelligent driving\",\"authors\":\"Kun Yang , Peng Sun , Dingkang Yang , Jieyu Lin , Azzedine Boukerche , Liang Song\",\"doi\":\"10.1016/j.adhoc.2023.103343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, various infrastructure-assisted or onboard driving assistant applications have been proposed as a component of intelligent transportation systems (ITS) to improve the transportation system’s efficiency and release public concern about road safety. However, such AI-assisted intelligent applications are mainly data-driven and put great demands on the computing power of the ITS systems. Therefore, in the highly dynamic Internet-of-Vehicles environment in ITS, how to effectively coordinate the limited computing power of the various components of the system and realize reliable support for such resource-consuming applications through efficient resource allocation methods is the focus of our research. Accordingly, a novel joint computing and communication resource scheduling method is proposed to fulfill those ITS applications’ inherent heterogeneous quality of service (QoS) requirements. By fully exploiting the computing resources provided by the onboard computing device, the edge computing device located in the vehicle’s proximity and remote data center, we designed a hierarchical three-layer Vehicular Edge Computing (VEC) framework. Briefly, an onboard joint computation offloading and transmission scheduling policy is designed to assign corresponding offloading decisions to the locally generated computing tasks by considering the vehicle’s computing resources and real-time network link status. Additionally, a new distributed resource allocation policy is developed for the edge devices, in which we derive a server selection policy and allocate communication time based on our proposed metric. To evaluate the performance and validate the effectiveness of our proposed method, we conduct extensive simulation tests and ablation experiments, respectively. The results show that our approach can achieve stable performance in various experimental settings. Also, compared to the state-of-the-art algorithms, our joint resource allocation policy significantly reduces the scheduling overhead, improves the utilization of system resources, and minimizes the data transmission delay caused by vehicle motion.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870523002639\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870523002639","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A novel hierarchical distributed vehicular edge computing framework for supporting intelligent driving
Recently, various infrastructure-assisted or onboard driving assistant applications have been proposed as a component of intelligent transportation systems (ITS) to improve the transportation system’s efficiency and release public concern about road safety. However, such AI-assisted intelligent applications are mainly data-driven and put great demands on the computing power of the ITS systems. Therefore, in the highly dynamic Internet-of-Vehicles environment in ITS, how to effectively coordinate the limited computing power of the various components of the system and realize reliable support for such resource-consuming applications through efficient resource allocation methods is the focus of our research. Accordingly, a novel joint computing and communication resource scheduling method is proposed to fulfill those ITS applications’ inherent heterogeneous quality of service (QoS) requirements. By fully exploiting the computing resources provided by the onboard computing device, the edge computing device located in the vehicle’s proximity and remote data center, we designed a hierarchical three-layer Vehicular Edge Computing (VEC) framework. Briefly, an onboard joint computation offloading and transmission scheduling policy is designed to assign corresponding offloading decisions to the locally generated computing tasks by considering the vehicle’s computing resources and real-time network link status. Additionally, a new distributed resource allocation policy is developed for the edge devices, in which we derive a server selection policy and allocate communication time based on our proposed metric. To evaluate the performance and validate the effectiveness of our proposed method, we conduct extensive simulation tests and ablation experiments, respectively. The results show that our approach can achieve stable performance in various experimental settings. Also, compared to the state-of-the-art algorithms, our joint resource allocation policy significantly reduces the scheduling overhead, improves the utilization of system resources, and minimizes the data transmission delay caused by vehicle motion.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.