{"title":"顺磁溶液中的分子间核弛豫:从自由基到稀土","authors":"Élie Belorizky , Pascal H. Fries , Sebastian Rast","doi":"10.1016/S1387-1609(01)01332-9","DOIUrl":null,"url":null,"abstract":"<div><p>The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln<sup>3+</sup> aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the <sup>1</sup>H NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln<sup>3+</sup> ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times <em>T</em><sub>1e</sub> and <em>T</em><sub>2e</sub>. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of <em>T</em><sub>1e</sub>, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes.</p></div>","PeriodicalId":100305,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry","volume":"4 11","pages":"Pages 825-832"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1387-1609(01)01332-9","citationCount":"3","resultStr":"{\"title\":\"Intermolecular nuclear relaxation in paramagnetic solutions: from free radicals to rare earths\",\"authors\":\"Élie Belorizky , Pascal H. Fries , Sebastian Rast\",\"doi\":\"10.1016/S1387-1609(01)01332-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln<sup>3+</sup> aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the <sup>1</sup>H NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln<sup>3+</sup> ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times <em>T</em><sub>1e</sub> and <em>T</em><sub>2e</sub>. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of <em>T</em><sub>1e</sub>, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes.</p></div>\",\"PeriodicalId\":100305,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry\",\"volume\":\"4 11\",\"pages\":\"Pages 825-832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1387-1609(01)01332-9\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387160901013329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387160901013329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intermolecular nuclear relaxation in paramagnetic solutions: from free radicals to rare earths
The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln3+ aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the 1H NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln3+ ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times T1e and T2e. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of T1e, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes.