{"title":"强调BDNF启动子和诱导剂在阿尔茨海默病中改善认知和记忆受损的作用。","authors":"Madhuparna Banerjee, Rekha R Shenoy","doi":"10.1515/jbcpp-2021-0182","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophic factor adding to neurons' development and endurance. The amount of BDNF present in the brain determines susceptibility to various neurodegenerative diseases. In Alzheimer's disease (AD), often it is seen that low levels of BDNF are present, which primarily contributes to cognition deficit by regulating long-term potentiation (LTP) and synaptic plasticity. Molecular mechanisms underlying the synthesis, storage and release of BDNF are widely studied. New molecules are found, which contribute to the signal transduction pathway. Two important receptors of BDNF are TrkB and p75NTR. When BDNF binds to the TrkB receptor, it activates three main signalling pathways-phospholipase C, MAPK/ERK, PI3/AKT. BDNF holds an imperative part in LTP and dendritic development, which are essential for memory formation. BDNF supports synaptic integrity by influencing LTP and LTD. This action is conducted by modulating the glutamate receptors; AMPA and NMDA. This review paper discusses the aforesaid points along with inducers of BDNF. Drugs and herbals promote neuroprotection by increasing the hippocampus' BDNF level in various disease-induced animal models for neurodegeneration. Advancement in finding pertinent molecules contributing to the BDNF signalling pathway has been discussed, along with the areas that require further research and study.</p>","PeriodicalId":15352,"journal":{"name":"Journal of Basic and Clinical Physiology and Pharmacology","volume":"34 2","pages":"125-136"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Emphasizing roles of BDNF promoters and inducers in Alzheimer's disease for improving impaired cognition and memory.\",\"authors\":\"Madhuparna Banerjee, Rekha R Shenoy\",\"doi\":\"10.1515/jbcpp-2021-0182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophic factor adding to neurons' development and endurance. The amount of BDNF present in the brain determines susceptibility to various neurodegenerative diseases. In Alzheimer's disease (AD), often it is seen that low levels of BDNF are present, which primarily contributes to cognition deficit by regulating long-term potentiation (LTP) and synaptic plasticity. Molecular mechanisms underlying the synthesis, storage and release of BDNF are widely studied. New molecules are found, which contribute to the signal transduction pathway. Two important receptors of BDNF are TrkB and p75NTR. When BDNF binds to the TrkB receptor, it activates three main signalling pathways-phospholipase C, MAPK/ERK, PI3/AKT. BDNF holds an imperative part in LTP and dendritic development, which are essential for memory formation. BDNF supports synaptic integrity by influencing LTP and LTD. This action is conducted by modulating the glutamate receptors; AMPA and NMDA. This review paper discusses the aforesaid points along with inducers of BDNF. Drugs and herbals promote neuroprotection by increasing the hippocampus' BDNF level in various disease-induced animal models for neurodegeneration. Advancement in finding pertinent molecules contributing to the BDNF signalling pathway has been discussed, along with the areas that require further research and study.</p>\",\"PeriodicalId\":15352,\"journal\":{\"name\":\"Journal of Basic and Clinical Physiology and Pharmacology\",\"volume\":\"34 2\",\"pages\":\"125-136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic and Clinical Physiology and Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jbcpp-2021-0182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic and Clinical Physiology and Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jbcpp-2021-0182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Emphasizing roles of BDNF promoters and inducers in Alzheimer's disease for improving impaired cognition and memory.
Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophic factor adding to neurons' development and endurance. The amount of BDNF present in the brain determines susceptibility to various neurodegenerative diseases. In Alzheimer's disease (AD), often it is seen that low levels of BDNF are present, which primarily contributes to cognition deficit by regulating long-term potentiation (LTP) and synaptic plasticity. Molecular mechanisms underlying the synthesis, storage and release of BDNF are widely studied. New molecules are found, which contribute to the signal transduction pathway. Two important receptors of BDNF are TrkB and p75NTR. When BDNF binds to the TrkB receptor, it activates three main signalling pathways-phospholipase C, MAPK/ERK, PI3/AKT. BDNF holds an imperative part in LTP and dendritic development, which are essential for memory formation. BDNF supports synaptic integrity by influencing LTP and LTD. This action is conducted by modulating the glutamate receptors; AMPA and NMDA. This review paper discusses the aforesaid points along with inducers of BDNF. Drugs and herbals promote neuroprotection by increasing the hippocampus' BDNF level in various disease-induced animal models for neurodegeneration. Advancement in finding pertinent molecules contributing to the BDNF signalling pathway has been discussed, along with the areas that require further research and study.
期刊介绍:
The Journal of Basic and Clinical Physiology and Pharmacology (JBCPP) is a peer-reviewed bi-monthly published journal in experimental medicine. JBCPP publishes novel research in the physiological and pharmacological sciences, including brain research; cardiovascular-pulmonary interactions; exercise; thermal control; haematology; immune response; inflammation; metabolism; oxidative stress; and phytotherapy. As the borders between physiology, pharmacology and biochemistry become increasingly blurred, we also welcome papers using cutting-edge techniques in cellular and/or molecular biology to link descriptive or behavioral studies with cellular and molecular mechanisms underlying the integrative processes. Topics: Behavior and Neuroprotection, Reproduction, Genotoxicity and Cytotoxicity, Vascular Conditions, Cardiovascular Function, Cardiovascular-Pulmonary Interactions, Oxidative Stress, Metabolism, Immune Response, Hematological Profile, Inflammation, Infection, Phytotherapy.