Annah M. Ondieki , Zephania Birech , Kenneth A. Kaduki , Peter W. Mwangi , Moses Juma , Boniface M. Chege
{"title":"使用表面增强拉曼光谱无标记测定血液中的睾酮和生长激素","authors":"Annah M. Ondieki , Zephania Birech , Kenneth A. Kaduki , Peter W. Mwangi , Moses Juma , Boniface M. Chege","doi":"10.1016/j.vibspec.2023.103605","DOIUrl":null,"url":null,"abstract":"<div><p><span>This work reports the potential use of surface-enhanced Raman spectroscopy (SERS) in rapid, label-free assaying of testosterone (TE) and growth hormone (GH) in whole blood. Biomarker SERS spectral bands from the two hormones (TE and GH) in intentionally spiked water for injection and in male Sprague-Dawley (SD) rat’s blood are reported. These concentration-sensitive Raman bands as deduced through Principal Component Analysis (PCA) and Analysis of Variance (ANOVA), were centered around 1490 and 1510 cm</span><sup>−1</sup> for GH, 1614 and 1636 cm<sup>−1</sup> for TE; and 684 cm<sup>−1</sup> for the hormone mixture (GH+TE) in blood. These bands exhibited significant intensity changes with the concentration of GH and TE hormones in blood. They were tentatively assigned to C-C stretching (684, 786, 856, 1614 and 1636 cm<sup>−1</sup>), CH<sub>2</sub> bending (1490 cm<sup>−1</sup>) and CH<sub>2</sub> stretching (1510 cm<sup>−1</sup>). These bands may be used in SERS assaying of the respective hormones in blood using a customized and calibrated Raman system thus utilizing the strengths of the SERS method that include, being label-free, rapid (<1 min), chemically specific, minimal sample preparation among others. Besides, the method may potentially be used in detecting abuse of TE and GH in sports where they are often abused concurrently.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"129 ","pages":"Article 103605"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-free assaying of testosterone and growth hormones in blood using surface-enhanced Raman spectroscopy\",\"authors\":\"Annah M. Ondieki , Zephania Birech , Kenneth A. Kaduki , Peter W. Mwangi , Moses Juma , Boniface M. Chege\",\"doi\":\"10.1016/j.vibspec.2023.103605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This work reports the potential use of surface-enhanced Raman spectroscopy (SERS) in rapid, label-free assaying of testosterone (TE) and growth hormone (GH) in whole blood. Biomarker SERS spectral bands from the two hormones (TE and GH) in intentionally spiked water for injection and in male Sprague-Dawley (SD) rat’s blood are reported. These concentration-sensitive Raman bands as deduced through Principal Component Analysis (PCA) and Analysis of Variance (ANOVA), were centered around 1490 and 1510 cm</span><sup>−1</sup> for GH, 1614 and 1636 cm<sup>−1</sup> for TE; and 684 cm<sup>−1</sup> for the hormone mixture (GH+TE) in blood. These bands exhibited significant intensity changes with the concentration of GH and TE hormones in blood. They were tentatively assigned to C-C stretching (684, 786, 856, 1614 and 1636 cm<sup>−1</sup>), CH<sub>2</sub> bending (1490 cm<sup>−1</sup>) and CH<sub>2</sub> stretching (1510 cm<sup>−1</sup>). These bands may be used in SERS assaying of the respective hormones in blood using a customized and calibrated Raman system thus utilizing the strengths of the SERS method that include, being label-free, rapid (<1 min), chemically specific, minimal sample preparation among others. Besides, the method may potentially be used in detecting abuse of TE and GH in sports where they are often abused concurrently.</p></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"129 \",\"pages\":\"Article 103605\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203123001121\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203123001121","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Label-free assaying of testosterone and growth hormones in blood using surface-enhanced Raman spectroscopy
This work reports the potential use of surface-enhanced Raman spectroscopy (SERS) in rapid, label-free assaying of testosterone (TE) and growth hormone (GH) in whole blood. Biomarker SERS spectral bands from the two hormones (TE and GH) in intentionally spiked water for injection and in male Sprague-Dawley (SD) rat’s blood are reported. These concentration-sensitive Raman bands as deduced through Principal Component Analysis (PCA) and Analysis of Variance (ANOVA), were centered around 1490 and 1510 cm−1 for GH, 1614 and 1636 cm−1 for TE; and 684 cm−1 for the hormone mixture (GH+TE) in blood. These bands exhibited significant intensity changes with the concentration of GH and TE hormones in blood. They were tentatively assigned to C-C stretching (684, 786, 856, 1614 and 1636 cm−1), CH2 bending (1490 cm−1) and CH2 stretching (1510 cm−1). These bands may be used in SERS assaying of the respective hormones in blood using a customized and calibrated Raman system thus utilizing the strengths of the SERS method that include, being label-free, rapid (<1 min), chemically specific, minimal sample preparation among others. Besides, the method may potentially be used in detecting abuse of TE and GH in sports where they are often abused concurrently.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.