{"title":"综述了二氧化碳热催化加氢制取增值化学品和燃料的最新进展","authors":"Heng Zhao , Chunyang Zeng , Noritatsu Tsubaki","doi":"10.1016/j.recm.2022.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>The development of industrialization has led to the increased demands for carbon-based energy resources, meanwhile, excessive carbon dioxide (CO<sub>2</sub>) emission caused by industrialization has aroused enormous environmental concerns. With the proposal of global carbon neutrality, much attention has been paid to the thermocatalytic hydrogenation of CO<sub>2</sub> into value-added chemicals and fuels, which is widely considered as a promising way to alleviate carbon emission and energy shortage. CO<sub>2</sub> hydrogenation to hydrocarbons mainly undergoes a CO<sub>2</sub>-modified Fischer-Tropsch synthesis (CO<sub>2</sub>-FTS) route or a methanol-mediated (MeOH) route. However, each route needs to be further optimized and possesses its own advantages and disadvantages. In the present review, the mechanisms and primary intermediates of these two routes are firstly summarized. Hereafter, the current understandings of the relationship among catalytic performance, physical-chemical properties of catalysts and reaction conditions for each route are overviewed according to different target products, including light olefins, gasoline, jet fuel, diesel and aromatics. Finally, we provide an outlook of dual-pathway catalysts on future direction of CO<sub>2</sub> hydrogenation.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 3","pages":"Pages 230-248"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000277/pdfft?md5=d48c93d60818c61534557e9b139d7546&pid=1-s2.0-S2772443322000277-main.pdf","citationCount":"7","resultStr":"{\"title\":\"A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels\",\"authors\":\"Heng Zhao , Chunyang Zeng , Noritatsu Tsubaki\",\"doi\":\"10.1016/j.recm.2022.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of industrialization has led to the increased demands for carbon-based energy resources, meanwhile, excessive carbon dioxide (CO<sub>2</sub>) emission caused by industrialization has aroused enormous environmental concerns. With the proposal of global carbon neutrality, much attention has been paid to the thermocatalytic hydrogenation of CO<sub>2</sub> into value-added chemicals and fuels, which is widely considered as a promising way to alleviate carbon emission and energy shortage. CO<sub>2</sub> hydrogenation to hydrocarbons mainly undergoes a CO<sub>2</sub>-modified Fischer-Tropsch synthesis (CO<sub>2</sub>-FTS) route or a methanol-mediated (MeOH) route. However, each route needs to be further optimized and possesses its own advantages and disadvantages. In the present review, the mechanisms and primary intermediates of these two routes are firstly summarized. Hereafter, the current understandings of the relationship among catalytic performance, physical-chemical properties of catalysts and reaction conditions for each route are overviewed according to different target products, including light olefins, gasoline, jet fuel, diesel and aromatics. Finally, we provide an outlook of dual-pathway catalysts on future direction of CO<sub>2</sub> hydrogenation.</p></div>\",\"PeriodicalId\":101081,\"journal\":{\"name\":\"Resources Chemicals and Materials\",\"volume\":\"1 3\",\"pages\":\"Pages 230-248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772443322000277/pdfft?md5=d48c93d60818c61534557e9b139d7546&pid=1-s2.0-S2772443322000277-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Chemicals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772443322000277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443322000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels
The development of industrialization has led to the increased demands for carbon-based energy resources, meanwhile, excessive carbon dioxide (CO2) emission caused by industrialization has aroused enormous environmental concerns. With the proposal of global carbon neutrality, much attention has been paid to the thermocatalytic hydrogenation of CO2 into value-added chemicals and fuels, which is widely considered as a promising way to alleviate carbon emission and energy shortage. CO2 hydrogenation to hydrocarbons mainly undergoes a CO2-modified Fischer-Tropsch synthesis (CO2-FTS) route or a methanol-mediated (MeOH) route. However, each route needs to be further optimized and possesses its own advantages and disadvantages. In the present review, the mechanisms and primary intermediates of these two routes are firstly summarized. Hereafter, the current understandings of the relationship among catalytic performance, physical-chemical properties of catalysts and reaction conditions for each route are overviewed according to different target products, including light olefins, gasoline, jet fuel, diesel and aromatics. Finally, we provide an outlook of dual-pathway catalysts on future direction of CO2 hydrogenation.